Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
In our efforts to develop novel small-molecule inhibitors for the NOD-like receptor family pyrin-domain-containing 3 (NLRP3) inflammasome as potential disease-modifying agents to treat neurological disorders including multiple sclerosis (MS), a hydroxyl sulfonamide analogue JC-171 has been rationally designed and biologically characterized both in vitro and in vivo. Our studies established that JC-171 dose dependently inhibited LPS/ATP-induced interleukin-1β (IL-1β) release from J774A.1 macrophages with an IC of 8.45 ± 1.56 μM. Selective inhibition of the NLRP3 inflammasome induced IL-1β release by this compound was also confirmed using mouse bone-marrow-derived macrophages and LPS-challenged mice in vivo. Furthermore, immunoprecipitation study revealed that JC-171 interfered with NLRP3/ASC interaction induced by LPS/ATP stimulation. More importantly, JC-171 treatment delayed the progression and reduced the severity of experimental autoimmune encephalomyelitis (EAE), a mouse model of MS, in both prophylactic and therapeutic settings. This coincided with blocking of IL-1β production and a pathogenic Th17 response. Collectively, these results suggest that JC-171 is a selective NLRP3 inflammasome inhibitor with biological activity in vivo, thus strongly encouraging further development of this lead compound as a potential therapeutic agent for human MS.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5672903 | PMC |
http://dx.doi.org/10.1021/acschemneuro.7b00124 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!