Electrical spin manipulation remains a central challenge for the realization of diverse spin-based information processing technologies. Motivated by the demonstration of confinement-enhanced sp-d exchange interactions in colloidal diluted magnetic semiconductor (DMS) quantum dots (QDs), such materials are considered promising candidates for future spintronic or spin-photonic applications. Despite intense research into DMS QDs, electrical control of their magnetic and magneto-optical properties remains a daunting goal. Here, we report the first demonstration of electrically induced magnetic polaron formation in any DMS, achieved by embedding Mn-doped CdSe/CdS core/shell QDs as the active layer in an electrical light-emitting device. Tracing the electroluminescence from cryogenic to room temperatures reveals an anomalous energy shift that reflects current-induced magnetization of the Mn spin sublattice, that is, excitonic magnetic polaron formation. These electrically induced magnetic polarons exhibit an energy gain comparable to their optically excited counterparts, demonstrating that magnetic polaron formation is achievable by current injection in a solid-state device.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.nanolett.7b01496 | DOI Listing |
Nat Commun
January 2025
Department of Physics and Arnold Sommerfeld Center for Theoretical Physics (ASC), Ludwig-Maximilians-Universität München, München, Germany.
Sci Rep
December 2024
Semiconductor Physics, Institute of Physics, Chemnitz University of Technology, 09126, Chemnitz, Germany.
Magnetic field effects (MFEs) in thermally activated delayed fluorescence (TADF) materials have been shown to influence the reverse intersystem crossing (RISC) and to impact on electroluminescence (EL) and conductivity. Here, we present a novel model combining Cole-Cole and Lorentzian functions to describe low and high magnetic field effects originating from hyperfine coupling, the Δg mechanism, and triplet processes. We applied this approach to organic light-emitting devices of third generation based on tris(4-carbazoyl-9-ylphenyl)amine (TCTA) and 2,2',2″-(1,3,5-benzinetriyl)-tris(1-phenyl-1-H-benzimidazole) (TPBi), exhibiting blue emission, to unravel their loss mechanisms.
View Article and Find Full Text PDFMaterials (Basel)
November 2024
Center of Physics of Minho and Porto Universities (CF-UM-UP), Laboratory for Materials and Emergent Technologies (LaPMET), Departamento de Física, Universidade do Minho, Campus de Gualtar, 4710-057 Braga, Portugal.
Laser ablation was used to successfully fabricate multiferroic bilayer thin films, composed of BaTiO (BTO) and CoFeO (CFO), on highly doped (100) Si substrates. This study investigates the influence of BaTiO layer thickness (50-220 nm) on the films' structural, magnetic, and dielectric properties. The dense, polycrystalline films exhibited a tetragonal BaTiO phase and a cubic spinel CoFeO layer.
View Article and Find Full Text PDFNanotechnology
December 2024
Guangxi Key Laboratory of Processing for Non-ferrous Metals and Featured Materials and Key Lab of New Processing Technology for Nonferrous Metals and Materials, Ministry of Education; School of Resources, Environmental and Materials, Guangxi University, Nanning 530004, People's Republic of China.
Due to the easy transformation to the non-luminous yellow-CsPbIphase in air,-CsPbInanocrystalline materials with red light emission find limited applications. Lifting its structural stability is a challenge in its quantum dot (QD) lighting field. Here we studied the doping of Mnions (5.
View Article and Find Full Text PDFFront Microbiol
November 2024
Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University, Cairo, Egypt.
Introduction: Laccases are blue-multicopper containing enzymes that are known to play a role in the bioconversion of recalcitrant compounds. Their role in free radical polymerization of aromatic compounds for their valorization remains underexplored. In this study, we used a pBAD plasmid containing a previously characterized CotA laccase gene (abbreviated as -Lacc) from strain ATCC 9945a to express this enzyme and explore its biotransformation/polymerization potential on β-naphthol.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!