In vivo pH mapping in tissue using hyperpolarized hydrogencarbonate- C has been proposed as a method to study tumor growth and treatment and other pathological conditions related to pH changes. The finite spin-lattice relaxation times (T ) of hyperpolarized media are a significant limiting factor for in vivo imaging. Relaxation times can be measured at standard magnetic fields (1.5 T, 3.0 T etc.), but no such data are available at low fields, where T values can be significantly shorter. This information is required to determine the potential loss of polarization as the agent is dispensed and transported from the polarizer to the MRI scanner. The purpose of this study is to measure T dispersion from low to clinical magnetic fields (0.4 mT to 3.0 T) of different hyperpolarized hydrogencarbonate formulations previously proposed in the literature for in vivo pH measurements. C-enriched cesium and sodium hydrogencarbonate preparations were hyperpolarized using dynamic nuclear polarization, and the T values of different samples were measured at different magnetic field strengths using a fast field-cycling relaxometer and a 3.0 T clinical MRI system. The effects of deuterium oxide as a dissolution medium for sodium hydrogencarbonate were also analyzed. This study finds that the cesium formulation has slightly shorter T values compared with the sodium preparation. However, the higher solubility of cesium hydrogencarbonate- C means it can be polarized at greater concentration, using less trityl radical than sodium hydrogencarbonate- C. This study also establishes that the preparation and handling of sodium hydrogencarbonate formulations in relation to cesium hydrogencarbonate is more difficult, due to the higher viscosity and lower achievable concentrations, and that deuterium oxide significantly increases the T of sodium hydrogencarbonate solutions. Finally, this work also investigates the influence of pH on the spin-lattice relaxation of cesium hydrogencarbonate- C measured over a pH range of 7 to 9 at 0.47 T.

Download full-text PDF

Source
http://dx.doi.org/10.1002/nbm.3749DOI Listing

Publication Analysis

Top Keywords

sodium hydrogencarbonate
16
cesium hydrogencarbonate-
12
spin-lattice relaxation
8
relaxation times
8
magnetic fields
8
hydrogencarbonate formulations
8
deuterium oxide
8
sodium
7
cesium
6
hydrogencarbonate
6

Similar Publications

Extensive agricultural regions commonly face issues of poor groundwater management, non-standard agricultural production practices, and unordered discharge of domestic pollution, leading to a continuous decline in groundwater quality and a sharp increase in risks. A comprehensive understanding of groundwater conditions and pollution is a crucial step in effectively addressing the water quality crisis. This study employs the Comprehensive Water Quality Index, Irrigation parameter, and Pollution Index to comprehensively investigate the groundwater quality in a typical agricultural area in Shandong, China, and assesses the suitability of groundwater for irrigation and the risks to human health.

View Article and Find Full Text PDF

Oral Tributyrin Treatment affects Short-Chain Fatty Acid Transport, Mucosal Health, and Microbiome in a Mouse Model of Inflammatory Diarrhea.

J Nutr Biochem

January 2025

Department of Gastroenterology, Hepatology, Infectious Diseases and Endocrinology, Hannover Medical School, Hannover, Germany. Electronic address:

Butyrate may decrease intestinal inflammation and diarrhea. This study investigates the impact of oral application of sodium butyrate (NaB) and tributyrin (TB) on colonic butyrate concentration, SCFA transporter expression, colonic absorptive function, barrier properties, inflammation, and microbial composition in the colon of slc26a3 mice, a mouse model for inflammatory diarrhea. In vivo fluid absorption and bicarbonate secretory rates were evaluated in the cecum and mid-colon of slc26a3 and slc26a3 mice before and during luminal perfusion of NaB-containing saline and were significantly stimulated in both slc26a3 and slc26a3 colon by NaB.

View Article and Find Full Text PDF

Surface water chemistry of the River Ganga at Varanasi was analyzed at 10 locations over 3 years (2019-2021) across pre-monsoon, monsoon, and post-monsoon seasons. The study aimed to assess water parameters using principal component analysis (PCA), calculate the water quality index (WQI), determine processes governing water chemistry, evaluate irrigation suitability, and estimate non-carcinogenic health risks. The physical parameters measured included pH (8.

View Article and Find Full Text PDF

Renal Tubular Acidosis: Core Curriculum 2025.

Am J Kidney Dis

January 2025

Division of Nephrology and Hypertension, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina.

Renal tubular acidoses (RTAs) are a subset of non-anion gap metabolic acidoses that result from complex disturbances in renal acid excretion. Net acid excretion is primarily accomplished through the reclamation of sodium bicarbonate and the buffering of secreted protons with ammonia or dibasic phosphate, all of which require a series of highly complex and coordinated processes along the renal tubule. Flaws in any of these components lead to the development of metabolic acidosis and/or a failure to compensate fully for other systemic acidoses.

View Article and Find Full Text PDF

One-step high-pressure and high-temperature direct aqueous mineral carbonation of tailings derived from mining of Platinum Group Metals in South Africa requires a fundamental understanding of the reactivity of the most dominant mineral phases, i.e. pyroxene and plagioclase (66 wt.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!