Purpose: Recent reports indicate that histamine and its novel, high-affinity histamine H receptor (HR) play a role in carcinogenesis, and thus HR signalling has become a focus of increasing interest in the pathogenesis of many cancers. The roles of HR in oral epithelial dysplasia (OED) and oral tongue squamous cell carcinoma (OTSCC) are unknown. The purpose of this study was to assess HR expression in OTSCC patients and in OTSCC-derived cell lines.
Methods: Biopsies taken from OED, OTSCC and healthy oral mucosa were studied by immunostaining. Primary human oral keratinocytes (HOKs) and two OTSCC-derived cell lines (HSC-3 and SCC-25) were used for the in vitro studies. Quantitative real-time PCR was used to measure oncogene expression in the stimulated HOKs.
Results: We found that HR-immunoreactivity was significantly reduced in the OED and OTSCC samples, especially in the samples with higher histopathological grades and noticeably increased mast cell counts. The presence of HR in HSC-3 cells had clearly waned, in contrast to the HOKs. Gene expression data indicated that histamine-relevant inflammatory and environmental elements may participate in the regulation of oncogenes.
Conclusions: Our results suggest an association between HR and oral carcinogenesis. Furthermore, our findings raise a potential implication of histamine-mediated factors in the regulation of oncogenes, possibly via mast cells, as crucial components of the tumor microenvironment. The identification of new elements that govern oral cancer development is highly relevant for the development of novel therapeutic approaches in OTSCC.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s13402-017-0336-6 | DOI Listing |
Alzheimers Dement
December 2024
Physiopathology in Aging Laboratory (LIM-22), University of São Paulo Medical School, São Paulo, São Paulo, Brazil.
Background: Excessive daytime sleepiness is a common and early symptom of Alzheimer's disease (AD). The subcortical wake-promoting neurons in the lateral hypothalamic area, tuberomammillary nucleus (TMN), and locus coeruleus synchronize to maintain wakefulness/arousal. Although significant neuronal decline occurs in wake-promoting regions, the TMN histaminergic neurons remain relatively more intact than orexinergic and nor-adrenergic neurons.
View Article and Find Full Text PDFFront Immunol
January 2025
Department Integrative Agriculture, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al Ain, United Arab Emirates.
Surfactant protein D (SP-D) is a C-type lectin that was originally discovered as a lung surfactant associated phospholipid recognising protein. It was originally shown to be of great importance in surfactant turnover and homeostasis in conjunction with another hydrophilic surfactant protein i.e.
View Article and Find Full Text PDFAllergy Asthma Proc
January 2025
From the Section of Allergy, Asthma and Immunology, Medicine and Pediatrics, Pennsylvania State University School of Medicine, Hershey, Pennsylvania and.
Patients with mast cell activation syndrome (MCAS) can be refractory to standard antimediator therapy. Alternative treatment options to reduce disease burden and improve quality of life are needed. To compile the evidence that supports the use of omalizumab for patients with refractory MCAS.
View Article and Find Full Text PDFFront Immunol
December 2024
Centre National de la Recherche Scientifique (CNRS) Unité Mixte de Recherche (UMR), Université Paris Cité, Paris, France.
Introduction: Systemic lupus erythematosus (SLE) is an autoimmune disease characterized by an overactive immune response, particularly involving excessive production of type I interferons. This overproduction is driven by the phosphorylation of IRF7, a crucial factor in interferon gene activation. Current treatments for SLE are often not very effective and can have serious side effects.
View Article and Find Full Text PDFArch Razi Inst
June 2024
Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran.
In the present study, the mechanisms involved in scopolamine-induced memory impairment have been investigated. The molecular events that take place during memory mostly include mechanisms that are seen in the acquisition phase. Results showed that one of the mechanisms of memory destruction caused by scopolamine, in addition to weakening the cholinergic system, is the indirect effect of scopolamine on other neurotransmitter systems, including the glutamatergic system.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!