Brain Aβ accumulation is considered an upstream event in pathogenesis of Alzheimer's disease. However, accumulating evidence indicates that other neurochemical changes potentiate the toxicity of this constitutively generated peptide. Here we report that the interaction of Aβ with extracellular Zn is essential for rapid uptake of Aβ and Zn into dentate granule cells in the normal rat hippocampus. The uptake of both Aβ and Zn was blocked by CaEDTA, an extracellular Zn chelator, and by Cd, a metal that displaces Zn for Aβ binding. perforant pathway LTP was unaffected by perfusion with 1000 nm Aβ in ACSF without Zn However, LTP was attenuated under preperfusion with 5 nm Aβ in ACSF containing 10 nm Zn, recapitulating the concentration of extracellular Zn, but not with 5 nm Aβ in ACSF containing 10 nm Zn Aβ and Zn were not taken up into dentate granule cells under these conditions, consistent with lower affinity of Aβ for Zn than Aβ Aβ-induced attenuation of LTP was rescued by both CaEDTA and CdCl, and was observed even with 500 pm Aβ Aβ injected into the dentate granule cell layer of rats induced a rapid memory disturbance that was also rescued by coinjection of CdCl The present study supports blocking the formation of Zn-Aβ in the extracellular compartment as an effective preventive strategy for Alzheimer's disease. Short-term memory loss occurs in normal elderly and increases in the predementia stage of Alzheimer's disease (AD). Amyloid-β (Aβ), a possible causing peptide in AD, is bound to Zn in the extracellular compartment in the hippocampus induced short-term memory loss in the normal rat brain, suggesting that extracellular Zn is essential for Aβ-induced short-term memory loss. The evidence is important to find an effective preventive strategy for AD, which is blocking the formation of Zn-Aβ in the extracellular compartment.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6705735 | PMC |
http://dx.doi.org/10.1523/JNEUROSCI.0954-17.2017 | DOI Listing |
J Biol Chem
February 2023
Department of Structural Biology, Van Andel Institute, Grand Rapids, Michigan, USA. Electronic address:
The Saccharomyces cerevisiae Yta7 is a chromatin remodeler harboring a histone-interacting bromodomain (BRD) and two AAA+ modules. It is not well understood how Yta7 recognizes the histone H3 tail to promote nucleosome disassembly for DNA replication or RNA transcription. By cryo-EM analysis, here we show that Yta7 assembles a three-tiered hexamer with a top BRD tier, a middle AAA1 tier, and a bottom AAA2 tier.
View Article and Find Full Text PDFJ Environ Manage
February 2022
Department of Civil Engineering, Lassonde School of Engineering, York University, ON, M3J1P3, Canada. Electronic address:
The interest in the A-stage of the adsorption/bio-oxidation (A/B) process has considerably increased due to its capacity of carbon redirection to the solids stream. Induced by its flexible and compact design, the Alternating Activated Adsorption (AAA) was recently implemented in full-scale as an alternative A-stage system. However, the literature on such a system is scarce.
View Article and Find Full Text PDFCell Rep
June 2019
Department of Crystallography, Institute of Structural and Molecular Biology, Birkbeck, University of London, Malet Street, London WC1E 7HX, UK. Electronic address:
AAA+ proteins form asymmetric hexameric rings that hydrolyze ATP and thread substrate proteins through a central channel via mobile substrate-binding pore loops. Understanding how ATPase and threading activities are regulated and intertwined is key to understanding the AAA+ protein mechanism. We studied the disaggregase ClpB, which contains tandem ATPase domains (AAA1, AAA2) and shifts between low and high ATPase and threading activities.
View Article and Find Full Text PDFElife
November 2018
Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France.
The biogenesis of 60S ribosomal subunits is initiated in the nucleus where rRNAs and proteins form pre-60S particles. These pre-60S particles mature by transiently interacting with various assembly factors. The ~5000 amino-acid AAA+ ATPase Rea1 (or Midasin) generates force to mechanically remove assembly factors from pre-60S particles, which promotes their export to the cytosol.
View Article and Find Full Text PDFJ Biol Chem
December 2018
From the Department of Biology, Faculty of Science and Engineering and
ClpB, a bacterial homologue of heat shock protein 104 (Hsp104), can disentangle aggregated proteins with the help of the DnaK, a bacterial Hsp70, and its co-factors. As a member of the expanded superfamily of ATPases associated with diverse cellular activities (AAA), ClpB forms a hexameric ring structure, with each protomer containing two AAA modules, AAA1 and AAA2. A long coiled-coil middle domain (MD) is present in the C-terminal region of the AAA1 and surrounds the main body of the ring.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!