is an estuarine bacterium and potent opportunistic human pathogen. It enters the food chain by asymptomatically colonizing a variety of marine organisms, most notably oysters. Expression of the -encoded extracellular polysaccharide, which enhances cell-surface adherence, is regulated by cyclic di-GMP (c-di-GMP) and the activator BrpT. The and homologs VpsT and CpsQ, directly bind c-di-GMP via a novel W[F/L/M][T/S]R motif, and c-di-GMP binding is absolutely required for activity. Notably, BrpT belongs to a distinct subclass of VpsT-like regulators that harbor a proline in the third position of the c-di-GMP binding motif (WLPR), and the impact of this change on activity is unknown. We show that the locus is organized as two linked operons with BrpT specifically binding to promoters upstream of and Expression data and structural modeling suggested that BrpT might be less dependent on c-di-GMP binding for activity than VpsT or CpsQ. We show that the affinity of BrpT for c-di-GMP is low and that signal binding is not a requisite for BrpT function. Furthermore, a BrpT mutant engineered to carry a canonical WLTR motif (BrpT) bound c-di-GMP with high affinity and its activity was now c-di-GMP dependent. Conversely, introduction of the WLPR motif into VpsT suppressed its dependence on c-di-GMP for activity. This is the first demonstration of reduced dependence on signal association for regulator function within this motif family. Thus, BrpT defines a new class of VpsT-like transcriptional regulators, and the WLPR motif variant may similarly liberate the activity of other subclass members. A genome may encode nearly 100 proteins that make, break, and bind c-di-GMP, underscoring its central role in the physiology of these bacteria. The activity of the biofilm regulators VpsT of and CpsQ of is regulated by the direct binding of c-di-GMP via a novel W[F/L/M][T/S]R motif. The homolog, BrpT, bears an unusual WLPR variant and remains active at low intracellular c-di-GMP levels. This suggests that the WLPR motif may also liberate the activity of other members of this subclass. A single point mutation at the 3rd position of the motif was sufficient to moderate dependence on c-di-GMP binding for activator function, highlighting the simplicity with which complex bacterial signaling networks can be rewired.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5585709 | PMC |
http://dx.doi.org/10.1128/JB.00344-17 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!