RNA in situ hybridization is a powerful method to investigate post-transcriptional regulation, but analysis of intracellular mRNA distributions in thick, complex tissues like the brain poses significant challenges. Here, we describe the application of single-molecule fluorescent in situ hybridization (smFISH) to quantitate primary nascent transcription and post-transcriptional regulation in whole-mount Drosophila larval and adult brains. Combining immunofluorescence and smFISH probes for different regions of a single gene, i.e., exons, 3'UTR, and introns, we show examples of a gene that is regulated post-transcriptionally and one that is regulated at the level of transcription. Our simple and rapid protocol can be used to co-visualise a variety of different transcripts and proteins in neuronal stem cells as well as deep brain structures such as mushroom body neuropils, using conventional confocal microscopy. Finally, we introduce the use of smFISH as a sensitive alternative to immunofluorescence for labelling specific neural stem cell populations in the brain.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5595163PMC
http://dx.doi.org/10.1016/j.ymeth.2017.06.025DOI Listing

Publication Analysis

Top Keywords

post-transcriptional regulation
12
situ hybridization
8
single molecule
4
molecule fluorescence
4
fluorescence situ
4
situ hybridisation
4
hybridisation quantitating
4
quantitating post-transcriptional
4
regulation drosophila
4
drosophila brains
4

Similar Publications

Transcriptome-wide N-methyladenosinem modifications analysis of growth and fumonisins production in Fusarium proliferatum causing banana crown rot.

Int J Biol Macromol

January 2025

Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China.

Crown rot caused by Fusarium proliferatum is a severe postharvest disease of banana fruit. The N-methyladenosine (mA) modification is the most common type of RNA modification and regulates gene expression in eukaryotes. Here, we analyzed transcriptome-wide changes in mA methylation to investigate post-transcriptional regulation mechanisms of growth and fumonisin biosynthesis of F.

View Article and Find Full Text PDF

WBSCR16 is essential for mitochondrial 16S rRNA processing in mammals.

Nucleic Acids Res

January 2025

Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 573 Xujiahui Road, Huangpu District, Shanghai 200025, China.

Mitochondrial rRNAs play important roles in regulating mtDNA-encoded gene expression and energy metabolism subsequently. However, the proteins that regulate mitochondrial 16S rRNA processing remain poorly understood. Herein, we generated adipose-specific Wbscr16-/-mice and cells, both of which exhibited dramatic mitochondrial changes.

View Article and Find Full Text PDF

Background: Post-menopausal women experience more severe muscular fatty infiltration, though the mechanisms remain unclear. The decline in estrogen levels is considered as a critical physiological alteration during post-menopause. Fibro/adipogenic progenitors (FAPs) are identified as major contributors to muscular fatty infiltration.

View Article and Find Full Text PDF

Transcription Regulation of Flagellins: A Structural Perspective.

Biochemistry

January 2025

Transcription Regulation Lab, Regional Centre for Biotechnology, NCR Biotech Science Cluster, Third Milestone, Faridabad-Gurgaon Expressway, Faridabad 121001, India.

Bacterial flagella are complex molecular motors that are essential for locomotion and host colonization. They consist of 30 different proteins expressed in varying stoichiometries. Their assembly and function are governed by a hierarchical transcriptional regulatory network with multiple checkpoints primarily regulated by sigma factors.

View Article and Find Full Text PDF

Background: LIN28, a highly conserved RNA-binding protein, regulate a wide variety of post-transcriptional cellular processes. The current study aimed to identify genetic variants of five single nucleotide polymorphisms (SNPs) in the LIN28B gene (rs221634, rs22163, rs314276, rs9404590, and rs12194974) and their association with Breast cancer.

Method: 220 patients and 230 controls were genotyped by the RFLP assay for Lin28B gene variants.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!