In phase II platform trials, 'many-to-one' comparisons are performed when K experimental treatments are compared with a common control to identify the most promising treatment(s) to be selected for Phase III trials. However, when sample sizes are limited, such as when the disease of interest is rare, only a single Phase II/III trial addressing both treatment selection and confirmatory efficacy testing may be feasible. In this paper, we suggest a two-step safety selection and testing procedure for such seamless trials. At the end of the study, treatments are first screened on the basis of safety, and those deemed to be sufficiently safe are then taken forwards for efficacy testing against a common control. All safety and efficacy evaluations are therefore performed at the end of the study, when for each patient all safety and efficacy data are available. If confirmatory conclusions are to be drawn from the trial, strict control of the family-wise error rate (FWER) is essential. However, to avoid unnecessary losses in power, no type I error rate should be "wasted" on comparisons which are no longer of interest because treatments have been dropped due to safety concerns. We investigate the impact on power and FWER control of multiplicity adjustments which correct efficacy tests only for the number of safe selected treatments instead of adjusting for all K null hypotheses the trial begins testing. We derive conditions under which strict control of the FWER can be achieved. Procedures using the estimated association between safety and efficacy outcomes are developed for the case when the correlation between endpoints is unknown. The operating characteristics of the proposed procedures are assessed via simulation.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5484516 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0180131 | PLOS |
Viruses
December 2024
Department of Global Health and Development, London School of Hygiene and Tropical Medicine, London WC1E 7HT, UK.
Vesicular stomatitis virus (VSV) represents a significant advancement in therapeutic medicine, offering unique molecular and cellular characteristics that make it exceptionally suitable for medical applications. The bullet-shaped morphology, RNA genome organization, and cytoplasmic replication strategy provide fundamental advantages for both vaccine development and oncolytic applications. VSV's interaction with host cells through the low-density lipoprotein receptor (LDL-R) and its sophisticated transcriptional regulation mechanisms enables precise control over therapeutic applications.
View Article and Find Full Text PDFViruses
December 2024
APC Microbiome Ireland, School of Microbiology, University College Cork, College Road, T12 K8AF Cork, Ireland.
Access to safe water and food is a critical issue in sub-Saharan Africa, where microbial contamination poses significant health risks. Conventional water treatment and food preservation methods have limitations in addressing water safety, particularly for antibiotic-resistant bacteria and other pathogenic microorganisms. This review explores the potential application of bacteriophages as an innovative solution for water treatment and food safety in the region.
View Article and Find Full Text PDFViruses
November 2024
Laboratório de Imunofarmacologia, Instituto Oswaldo Cruz (IOC), Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro 21040-361, RJ, Brazil.
Coronavirus disease 2019 (COVID-19) still causes death in elderly and immunocompromised individuals, for whom the sustainability of the vaccine response may be limited. Antiviral treatments, such as remdesivir or molnupiravir, have demonstrated limited clinical efficacy. Nirmatrelvir, an acute respiratory syndrome coronavirus 2 (SARS-CoV-2) major protease inhibitor, is clinically effective but has been associated with viral rebound and antiviral resistance.
View Article and Find Full Text PDFVaccines (Basel)
December 2024
Prophyl Kft., 7700 Mohács, Hungary.
Background/objectives: The ongoing COVID-19 pandemic has underscored the need for alternative prophylactic measures, particularly for populations for whom vaccines may not be effective or accessible. This study aims to evaluate the efficacy of intranasally administered IgY antibodies derived from hen egg yolks as a protective agent against SARS-CoV-2 infection in Syrian golden hamsters, a well-established animal model for COVID-19.
Methods: Hens were immunized with the spike protein of SARS-CoV-2 to generate IgY antibodies.
Vaccines (Basel)
December 2024
Department of Internal Medicine, Osaka Dental University, 8-1 Kuzuhahanazonocho, Hirakata 573-1121, Osaka, Japan.
This report examines the evolving role of coronavirus disease 2019 (COVID-19) vaccination in Japan, especially in light of the reduced public concern following the reclassification of COVID-19 as a Category 5 infectious disease in May 2023. With over half the population estimated to have hybrid immunity from prior infections and vaccinations, this report evaluated the necessity and frequency of additional booster doses. Despite strong recommendations from Japanese medical societies to continue vaccination, public skepticism remains owing to financial burdens, adverse reactions, and the perceived limited benefits of frequent boosters.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!