p23 is a small acidic protein with intrinsic molecular chaperone activity. It is best known as a co-chaperone of the major cytosolic molecular chaperone Hsp90. p23 binds the N-terminus of Hsp90 and stabilizes the ATP-bound and N-terminally closed Hsp90 dimer. It is in this configuration that many Hsp90 clients are most stably bound. Considering the important role of p23 in the Hsp90 cycle, it came as a surprise that it is not absolutely essential for viability in the budding yeast or for mouse development. Mice without p23 develop quite normally until birth and then all die perinatally because of immature lungs. The only other apparent phenotype of late stage embryos and newborns is a skin defect, which we have further characterized here. We found that skin differentiation is impaired, and that both apoptosis and cell proliferation are augmented in the absence of p23; the consequences are a severe thinning of the stratum corneum and reduced numbers of hair follicles. The altered differentiation, spontaneous apoptosis and proliferation are all mimicked by isolated primary keratinocytes indicating that they do require p23 functions in a cell-autonomous fashion. Since the phenotype of p23-null embryos is strikingly similar to that of embryos lacking the glucocorticoid receptor, a paradigmatic Hsp90-p23 client protein, we investigated glucocorticoid signaling. We discovered that it is impaired in vivo and for some aspects in isolated keratinocytes. Our results suggest that part of the phenotype of p23-null embryos can be explained by an impact on this particular Hsp90 client, but do not exclude that p23 by itself or in association with Hsp90 affects skin development and homeostasis through yet other pathways.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5484504 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0180035 | PLOS |
Neurobiol Stress
January 2025
Fralin Biomedical Research Institute at VTC, Roanoke, VA, USA.
Stress plays a significant role in the onset of numerous psychiatric disorders. Depending on individual resilience or stressor's nature, long-term changes to stress in the brain can lead to a wide range of behavioral symptoms, including social withdrawal, feelings of helplessness, and emotional overeating. The brain receptor molecules are key mediators of these processes, translating neuromodulatory signals into neuronal responses or circuit activity changes that ultimately shape behavioral outcomes.
View Article and Find Full Text PDFNeurobiol Stress
January 2025
State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China.
Postpartum depression (PPD) adversely affects the growth and development of the offspring, increasing the risk of various internalizing behaviorsduring adolescence. Studies have shown that corticosterone (CORT)-induced PPD affects neurogenesis in the offspring, which is closely related to the onset of depression. However, the underlying mechanisms of these changes in the offspring of PPD mothers remain unexplored.
View Article and Find Full Text PDFNat Biotechnol
January 2025
Department of Biomedicine, University of Basel, Basel, Switzerland.
Understanding a small molecule's mode of action (MoA) is essential to guide the selection, optimization and clinical development of lead compounds. In this study, we used high-throughput non-targeted metabolomics to profile changes in 2,269 putative metabolites induced by 1,520 drugs in A549 lung cancer cells. Although only 26% of the drugs inhibited cell growth, 86% caused intracellular metabolic changes, which were largely conserved in two additional cancer cell lines.
View Article and Find Full Text PDFAnn Rheum Dis
January 2025
Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York, USA. Electronic address:
Objectives: This study aims to elucidate the microbial signatures associated with autoimmune diseases, particularly systemic lupus erythematosus (SLE) and inflammatory bowel disease (IBD), compared with colorectal cancer (CRC), to identify unique biomarkers and shared microbial mechanisms that could inform specific treatment protocols.
Methods: We analysed metagenomic datasets from patient cohorts with six autoimmune conditions-SLE, IBD, multiple sclerosis, myasthenia gravis, Graves' disease and ankylosing spondylitis-contrasting these with CRC metagenomes to delineate disease-specific microbial profiles. The study focused on identifying predictive biomarkers from species profiles and functional genes, integrating protein-protein interaction analyses to explore effector-like proteins and their targets in key signalling pathways.
Tissue Eng Regen Med
January 2025
Department of Pediatrics, College of Medicine, Ewha Womans University, Seoul, 07804, South Korea.
Background: Exogenous Cushing's syndrome, which results from prolonged glucocorticoid treatment, is associated with metabolic abnormalities. Previously, we reported the inhibitory effect of tonsil-derived mesenchymal stem cell conditioned medium (T-MSC CM) on glucocorticoid signal transduction. In this study, we investigated the therapeutic efficacy of T-MSCs in a mouse model of exogenous Cushing's syndrome.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!