Septic shock increases vascular permeability, leading to multiple organ failure including cardiac dysfunction, a major contributor to septic death. Podosome, an actin-based dynamic membrane structure, plays critical roles in extracellular matrix degradation and angiogenesis. However, whether podosome contributes to endothelial barrier dysfunction during septic shock remains unknown. In this study, we found that the endothelial hyperpermeability, stimulated by phorbol 12-myristate 13-acetate and thrombin, was accompanied by increased formation of podosome clusters at the cell periphery, indicating a positive correlation between podosome clusters and endothelial leakage. Interestingly, we observed that circulating exosomes collected from septic mice were able to stimulate podosome cluster formation in cardiac endothelial cells, together with increased permeability in vitro/in vivo and cardiac dysfunction. Mechanistically, we identified that septic exosomes contained higher levels of reactive oxygen species (ROS) than normal ones, which were effectively transported to endothelial cells (ECs). Depletion of ROS in septic exosomes significantly reduced their capacity for promoting podosome cluster formation and thereby dampened vascular leakage. Finally, we elucidated that podosome cluster-induced endothelial hyperpermeability was associated with fragmentation/depletion of zonula occludens-1 (ZO-1) at the cell periphery. Our results demonstrate that septic exosomes were enriched with high amounts of ROS, which can be transported to ECs, leading to the generation of podosome clusters in target ECs and thereby, causing ZO-1 relocation, vascular leakage, and cardiac dysfunction.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5742088PMC
http://dx.doi.org/10.1097/SHK.0000000000000928DOI Listing

Publication Analysis

Top Keywords

podosome cluster
12
cluster formation
12
cardiac dysfunction
12
podosome clusters
12
septic exosomes
12
podosome
9
circulating exosomes
8
septic
8
septic mice
8
promoting podosome
8

Similar Publications

Growing evidence indicates that brain-derived neurotrophic factor (BDNF) is produced in contracting skeletal muscles and is secreted as a myokine that plays an important role in muscle metabolism. However, the involvement of muscle-generated BDNF and the regulation of its vesicular trafficking, localization, proteolytic processing, and spatially restricted release during the development of vertebrate neuromuscular junctions (NMJs) remain largely unknown. In this study, we first reported that BDNF is spatially associated with the actin-rich core domain of podosome-like structures (PLSs) at topologically complex acetylcholine receptor (AChR) clusters in cultured Xenopus muscle cells.

View Article and Find Full Text PDF

Podosome Nucleation Is Facilitated by Multivalent Interactions between Syk and ITAM-containing Membrane Complexes.

J Immunol

October 2024

Program in Cell Biology, Peter Gilgan Centre for Research and Learning, Hospital for Sick Children, Toronto, Ontario, Canada.

Immune cells survey their microenvironment by forming dynamic cellular protrusions that enable chemotaxis, contacts with other cells, and phagocytosis. Podosomes are a unique type of protrusion structured by an adhesive ring of active integrins that surround an F-actin-rich core harboring degradative proteases. Although the features of podosomes, once-established, have been well defined, the steps that lead to podosome formation remain poorly understood by comparison.

View Article and Find Full Text PDF

A mechanosensitive caveolae-invadosome interplay drives matrix remodelling for cancer cell invasion.

Nat Cell Biol

December 2023

Actin and Membrane Dynamics Laboratory, Institut Curie-Research Center, CNRS UMR144, PSL Research University, Paris, France.

Invadosomes and caveolae are mechanosensitive structures that are implicated in metastasis. Here, we describe a unique juxtaposition of caveola clusters and matrix degradative invadosomes at contact sites between the plasma membrane of cancer cells and constricting fibrils both in 2D and 3D type I collagen matrix environments. Preferential association between caveolae and straight segments of the fibrils, and between invadosomes and bent segments of the fibrils, was observed along with matrix remodelling.

View Article and Find Full Text PDF

Disease-related PSS1 mutant impedes the formation and function of osteoclasts.

J Lipid Res

November 2023

Department of Health Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan. Electronic address:

Phosphatidylserine (PS) is an acidic phospholipid that is involved in various cellular events. Heterologous dominant mutations have been identified in the gene encoding PS synthase 1 (PSS1) in patients with a congenital disease called Lenz-Majewski syndrome (LMS). Patients with LMS show various symptoms, including craniofacial/distal-limb bone dysplasia and progressive hyperostosis.

View Article and Find Full Text PDF

Invadopodia are extracellular matrix (ECM) degrading structures, which promote cancer cell invasion. The nucleus is increasingly viewed as a mechanosensory organelle that determines migratory strategies. However, how the nucleus crosstalks with invadopodia is little known.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!