Knowledge-Based Topic Model for Unsupervised Object Discovery and Localization.

IEEE Trans Image Process

School of Electronic Engineering, Xidian University, Xi'an, China.

Published: July 2018

Unsupervised object discovery and localization is to discover some dominant object classes and localize all of object instances from a given image collection without any supervision. Previous work has attempted to tackle this problem with vanilla topic models, such as latent Dirichlet allocation (LDA). However, in those methods no prior knowledge for the given image collection is exploited to facilitate object discovery. On the other hand, the topic models used in those methods suffer from the topic coherence issue-some inferred topics do not have clear meaning, which limits the final performance of object discovery. In this paper, prior knowledge in terms of the so-called must-links are exploited from Web images on the Internet. Furthermore, a novel knowledge-based topic model, called LDA with mixture of Dirichlet trees, is proposed to incorporate the must-links into topic modeling for object discovery. In particular, to better deal with the polysemy phenomenon of visual words, the must-link is re-defined as that one must-link only constrains or topic(s) instead of topics, which leads to significantly improved topic coherence. Moreover, the must-links are built and grouped with respect to specific object classes, thus the must-links in our approach are , which allows to more efficiently exploit discriminative prior knowledge from Web images. Extensive experiments validated the efficiency of our proposed approach on several data sets. It is shown that our method significantly improves topic coherence and outperforms the unsupervised methods for object discovery and localization. In addition, compared with discriminative methods, the naturally existing object classes in the given image collection can be subtly discovered, which makes our approach well suited for realistic applications of unsupervised object discovery.Unsupervised object discovery and localization is to discover some dominant object classes and localize all of object instances from a given image collection without any supervision. Previous work has attempted to tackle this problem with vanilla topic models, such as latent Dirichlet allocation (LDA). However, in those methods no prior knowledge for the given image collection is exploited to facilitate object discovery. On the other hand, the topic models used in those methods suffer from the topic coherence issue-some inferred topics do not have clear meaning, which limits the final performance of object discovery. In this paper, prior knowledge in terms of the so-called must-links are exploited from Web images on the Internet. Furthermore, a novel knowledge-based topic model, called LDA with mixture of Dirichlet trees, is proposed to incorporate the must-links into topic modeling for object discovery. In particular, to better deal with the polysemy phenomenon of visual words, the must-link is re-defined as that one must-link only constrains or topic(s) instead of topics, which leads to significantly improved topic coherence. Moreover, the must-links are built and grouped with respect to specific object classes, thus the must-links in our approach are , which allows to more efficiently exploit discriminative prior knowledge from Web images. Extensive experiments validated the efficiency of our proposed approach on several data sets. It is shown that our method significantly improves topic coherence and outperforms the unsupervised methods for object discovery and localization. In addition, compared with discriminative methods, the naturally existing object classes in the given image collection can be subtly discovered, which makes our approach well suited for realistic applications of unsupervised object discovery.

Download full-text PDF

Source
http://dx.doi.org/10.1109/TIP.2017.2718667DOI Listing

Publication Analysis

Top Keywords

object discovery
48
object classes
24
image collection
24
prior knowledge
24
topic coherence
24
object
21
discovery localization
20
unsupervised object
16
topic models
16
web images
16

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!