MITF governs multiple steps in the development of melanocytes, including specification from neural crest, growth, survival, and terminal differentiation. In addition, the level of MITF activity determines the phenotype adopted by melanoma cells, whether invasive, proliferative, or differentiated. However, MITF does not act alone. Here, we review literature on the transcription factors that co-regulate MITF-dependent genes. ChIP-seq studies have indicated that the transcription factors SOX10, YY1, and TFAP2A co-occupy subsets of regulatory elements bound by MITF in melanocytes. Analyses at single loci also support roles for LEF1, RB1, IRF4, and PAX3 acting in combination with MITF, while sequence motif analyses suggest that additional transcription factors colocalize with MITF at many melanocyte-specific regulatory elements. However, the precise biochemical functions of each of these MITF collaborators and their contributions to gene expression remain to be elucidated. Analogous to the transcriptional networks in morphogen-patterned tissues during embryogenesis, we anticipate that the level of MITF activity is controlled not only by the concentration of activated MITF, but also by additional transcription factors that either quantitatively or qualitatively influence the expression of MITF-target genes.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5939569 | PMC |
http://dx.doi.org/10.1111/pcmr.12611 | DOI Listing |
Adv Sci (Weinh)
January 2025
State Key Laboratory of Reproductive Medicine and Offspring Health, Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, China.
Perfluorohexane sulfonic acid (PFHxS) is extensively used in waterproof coatings and fire-fighting foams, and several studies have found it to be a potential health hazard, but there is still unknown about its effects on spermatogenesis. Our results showed that PFHxS-treated mice have significant reproductive toxicity, including a decrease in sperm count and motility, and the levels of sex hormones (P < 0.05).
View Article and Find Full Text PDFPLoS One
January 2025
Intensive Care Unit, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong, PR China.
Background: Shenfu injection (SFI), derived from a traditional Chinese medicine (TCM) prescription, is an effective drug for the treatment of sepsis-induced myocardial injury (SIMI) with good efficacy, but its exact therapeutic mechanism remains unclear.
Methods: SwissTargetPrediction and GeneCards database were used to obtain relevant targets for SFI and SIMI. STRING 11.
PLoS One
January 2025
School of Life Sciences, Anhui Medical University, Hefei, Anhui, China.
Primary hepatocellular carcinoma (PHC) is the sixth most common cancer and the third leading cause of cancer death worldwide. Hepatocellular carcinoma (HCC) accounts for 75%-85% of PHC. LARP3 is aberrantly expressed in multiple cancers.
View Article and Find Full Text PDFSci Adv
January 2025
Department of Hematology, Zhongda Hospital, Key Laboratory of Developmental Genes and Human Disease, School of Life Science and Technology, Southeast University, Nanjing 210096, China.
SPT5 exhibits versatile functions in RNA Pol II promoter proximal pausing, pause release, and elongation in metazoans. However, the mechanism underlying the functional switch of SPT5 during early elongation has not been fully understood. Here, we report that the phosphorylation site-rich domain (PRD)/CTR1 and the prion-like domain (PLD)/CTR2, which are situated adjacent to each other within the C-terminal repeat (CTR) in SPT5, play pivotal roles in Pol II pausing and elongation, respectively.
View Article and Find Full Text PDFSci Adv
January 2025
State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin 300353, People's Republic of China.
Acute alcohol intoxication could cause multiorgan damage, including nervous, digestive, and cardiovascular systems, and in particular, irreversible damage to the brain and liver. Emerging studies have revealed that the endogenous multienzymatic antioxidant defense system (MEAODS) plays a central role in preventing oxidative stress and other toxicological compounds produced by alcohol. However, few available drugs could quickly regulate MEAODS.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!