Polymorphic human flavin-containing monooxygenase 3 (FMO3) is associated with the inherited disorder trimethylaminuria. Several FMO3 variants have been observed in a variety of ethnic groups, including a Japanese cohort suffering from trimethylaminuria. The aim of this study was to screen another self-reported Japanese trimethylaminuria cohort for novel FMO3 variants and to investigate these new variants. Subjects with low FMO3 metabolic capacities were identified by measuring the urinary trimethylamine and trimethylamine -oxide concentrationsin171 Japanese volunteers. The genes from these subjects and their family members were then sequenced. Heterozygotes or homozygotes for novel single-nucleotide polymorphisms c.20 T > C p.(Ile7Thr), c.122 G > A p.(Trp41Ter), c.127T > A p.(Phe43Ile), c.488 T > C p.(Leu163Pro), and c.1127G > A p.(Gly376Glu) and a heterozygote for the novel duplication c.850_860dupTTTAACGATGA p.(Glu287AspfsTer17) were identified. In addition, the known (but as yet uncharacterized) single-nucleotide polymorphism c.929 C > T p.(Ser310Leu) was found. Pedigree analysis revealed the p.(Ser310Leu) allele in configuration with c.929 C > T p.(Glu158Lys). These variant FMO3 proteins recombinantly expressed in membranes exhibited decreased -oxygenation activities toward trimethylamine and benzydamine. Although the allele frequencies of these seven variants were low, the present results suggest that individuals homozygous or heterozygous for any of these novel missense or duplication variants or known nonsense mutations such as p.(Cys197Ter) may possess abnormal activities toward trimethylamine -oxygenation.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5471399 | PMC |
http://dx.doi.org/10.1016/j.ymgmr.2015.10.013 | DOI Listing |
BMC Biol
January 2025
The Key Laboratory of Biotechnology for Medicinal Plant of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu, 221116, China.
Background: The variations in alliin content are a crucial criterion for evaluating garlic quality and is the sole precursor for allicin biosynthesis, which is significant for the growth, development, and stress response of garlic. WRKY transcription factors are essential for enhancing stress resistance by regulating the synthesis of plant secondary metabolites. However, the molecular mechanisms regulating alliin biosynthesis remain unexplored.
View Article and Find Full Text PDFCell Mol Life Sci
December 2024
Center for Mitochondrial Research and Medicine, College of Medicine Chang Gung University, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan.
Imbalances in gut microbiota and their metabolites have been implicated in osteoporotic disorders. Trimethylamine-n-oxide (TMAO), a metabolite of L-carnitine produced by gut microorganisms and flavin-containing monooxygenase-3, is known to accelerate tissue metabolism and remodeling; however, its role in bone loss remained unexplored. This study investigates the relationship between gut microbiota dysbiosis, TMAO production, and osteoporosis development.
View Article and Find Full Text PDFFront Mol Neurosci
November 2024
Department of Anesthesiology and Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China.
Sleep deprivation (SD) contributes to cognitive impairment. Astrocytic cholesterol biosynthesis is crucial for brain cholesterol homeostasis and cognitive function. However, the underlying mechanism of astrocytic cholesterol metabolism in SD-induced cognitive impairment has not been fully explored.
View Article and Find Full Text PDFAnnu Rev Plant Biol
December 2024
RIKEN Center for Sustainable Resource Science, Wako, Saitama, Japan; email:
I grew up with laboratory glassware and microscopes as treasures from a young age. I was a member of the Chemistry Club in junior high school, and when I visited RIKEN with club members, I wished to become an organic chemist in the future. I received my doctoral degree through the study of the spawning inhibitor of starfish.
View Article and Find Full Text PDFClin Transl Med
December 2024
State Key Laboratory of Systems Medicine for Cancer, Renji-Med X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China.
Background: Inflammatory bowel disease (IBD) presents a significant challenge due to its intricate pathogenesis. NSD2, a histone methyltransferase responsible for dimethylating histone 3 at lysine 36, is associated with transcriptional activation. NSD2 expression is decreased in both the intestinal epithelial cells (IECs) of IBD patients and the IBD mouse model.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!