In eukaryote genomes, the polyadenylation site marks termination of mature RNA transcripts by a poly-adenine tail. The polyadenylation site is recognized by a dynamic protein complex, among which the poly-adenine-binding protein nuclear1 plays a key role. Reduced poly-adenine-binding protein nuclear1 levels are found in aged muscles and are even lower in oculopharyngeal muscular dystrophy patients. Oculopharyngeal muscular dystrophy is a rare, late onset autosomal dominant myopathy, and is caused by an alanine expansion mutation in poly-adenine-binding protein nuclear1. Mutant poly-adenine-binding protein nuclear1 forms insoluble nuclear aggregates leading to depletion of functional poly-adenine-binding protein nuclear1 levels. In oculopharyngeal muscular dystrophy models, increased utilization of proximal polyadenylation sites has been observed in tandem 3'-untranslated regions, and most often cause gene upregulation. However, global alterations in expression profiles canonly partly be explained by polyadenylation site switches within the most distal 3'-untranslated region. Most poly-adenine signals are found at the distal 3'-untranslated region, but a significant part is also found in internal gene regions, like introns, exons, and internal 3'-untranslated regions. Here, we investigated poly-adenine-binding protein nuclear1's role in polyadenylation site utilization in internal gene regions. In the quadriceps muscle of oculopharyngeal muscular dystrophy mice expressing expPABPN1 we found significant polyadenylation site switches between gene regions in 17% of genes with polyadenylation site in multiple regions ( = 574; 5% False Discovery Rate). Polyadenylation site switches between gene regions were associated with differences in transcript expression levels and alterations in open reading frames. Transcripts ending at internal polyadenylation site were confirmed in tibialis anterior muscles from the same mice and in mouse muscle cell cultures overexpressing expPABPN1. The polyadenylation site switches were associated with nuclear accumulation of full-length transcripts. Our results provide further insights into the diverse roles of poly-adenine-binding protein nuclear1 in the post-transcriptional control of muscle gene expression and its relevance for oculopharyngeal muscular dystrophy pathology and muscle aging.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5445584 | PMC |
http://dx.doi.org/10.1038/s41514-017-0007-x | DOI Listing |
Int J Physiol Pathophysiol Pharmacol
December 2024
Gene Expression and Signaling Lab, Department of Zoology, Mahatma Gandhi Central University Motihari Motihari, Bihar 845401, India.
Objective: The Heat Shock Protein 70 (HSP70) family is a highly conserved group of molecular chaperones essential for maintaining cellular homeostasis. These proteins are necessary for protein folding, assembly, and degradation and involve cell recovery from stress conditions. HSP70 proteins are upregulated in response to heat shock, oxidative stress, and pathogenic infections.
View Article and Find Full Text PDFCell Rep
January 2025
Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA; Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN 55455, USA. Electronic address:
Localized prostate cancer can be cured by radiation or surgery, but advanced prostate cancer continues to be a clinical challenge. Altered alternative polyadenylation occurs in numerous cancers and can downregulate tumor-suppressor genes and upregulate oncogenes. We found that the cleavage and polyadenylation specificity factor (CPSF) complex factor CPSF1 is upregulated in patients with advanced prostate cancer, with high CPSF1 expression correlating with worse progression-free survival.
View Article and Find Full Text PDFJ Virol
January 2025
Institute for Medical Virology and Epidemiology of Viral Diseases, University of Tuebingen, Tuebingen, Germany.
Human papillomaviruses (HPV) from the genus beta have been implicated in the development of cutaneous squamous cell cancer in and organ transplant patients. In contrast to alpha-high-risk HPV, which cause ano-genital and oropharyngeal cancers, beta-HPV replication is not well understood. The beta-HPV49 transcriptome was analyzed by RNA sequencing using stable keratinocyte cell lines maintaining high levels of extrachromosomally replicating E8- genomes, which can be established due to a lack of the viral E8^E2 repressor protein.
View Article and Find Full Text PDFMol Biol Rep
January 2025
Hematology and Oncology Research Center, Non-communicable Diseases Research Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.
Background: Recent genomic research has identified several genetic factors contributing to B-cell acute lymphoblastic leukemia (B-ALL). However, the exact cause of the disease is still not fully understood. It is known that mutations in the TAL2 gene play important roles in the development of acute lymphoblastic leukemia.
View Article and Find Full Text PDFFront Parasitol
January 2024
Department of Biomedical Sciences, University of Minnesota Medical School, Duluth, MN, United States.
RNA-specific nucleotidyltransferases (rNTrs) add nontemplated nucleotides to the 3 end of RNA. Two noncanonical rNTRs that are thought to be poly(A) polymerases (PAPs) have been identified in the mitochondria of trypanosomes - KPAP1 and KPAP2. KPAP1 is the primary polymerase that adds adenines (As) to trypanosome mitochondrial mRNA 3 tails, while KPAP2 is a non-essential putative polymerase whose role in the mitochondria is ambiguous.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!