Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
As populations diverge in allopatry, but under similar thermal conditions, do similar thermal performance phenotypes evolve by maintaining similar gene expression patterns, or does genetic divergence lead to divergent patterns of gene expression between these populations? We used genetically divergent populations of the copepod , whose performance at different thermal conditions is well characterized, to investigate transcriptome-wide expression responses under two different thermal regimes: (1) a nonvariable temperature regime and (2) a regime with variable temperature. Our results show the expression profiles of the response to these regimes differed substantially among populations, even for populations that are geographically close. This pattern was accentuated when populations were raised in the variable temperature environment. Less heat-tolerant populations mounted strong but divergent responses to the different thermal regimes, with a large heat-shock response observed in one population, and an apparent reduction in the expression of genes involved in basic cellular processes in the other. Our results suggest that as populations diverge in allopatry, they may evolve starkly different responses to changes in temperature, at the gene expression level, while maintaining similar thermal performance phenotypes.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5478056 | PMC |
http://dx.doi.org/10.1002/ece3.3016 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!