Background: Modern biorefineries require enzymatic cocktails of improved efficiency to generate fermentable sugars from lignocellulosic biomass. Cellulolytic fungi, among other microorganisms, have demonstrated the highest potential in terms of enzymatic productivity, complexity and efficiency. On the other hand, under cellulolytic-inducing conditions, they often produce a considerable diversity of carbohydrate-active enzymes which allow them to adapt to changing environmental conditions. However, industrial conditions are fixed and adjusted to the optimum of the whole cocktail, resulting in underperformance of individual enzymes.

Results: One of these cellulolytic cocktails from has been analyzed here by means of LC-MS/MS. Pure GH6 family members detected have been characterized, confirming previous studies, and added to whole cocktails to compare their contribution in the hydrolysis of industrial substrates. Finally, independent deletions of two GH6 family members, as an example of the enzymatic diversity management, led to the development of a strain producing a more efficient cellulolytic cocktail.

Conclusions: These data indicate that the deletion of noncontributive cellulases (here EG VI) can increase the cellulolytic efficiency of the cocktail, validating the management of cellulase diversity as a strategy to obtain improved fungal cellulolytic cocktails.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5477296PMC
http://dx.doi.org/10.1186/s13068-017-0845-6DOI Listing

Publication Analysis

Top Keywords

cellulolytic cocktails
12
gh6 family
8
family members
8
cellulolytic
6
cocktails
5
management enzyme
4
diversity
4
enzyme diversity
4
diversity high-performance
4
high-performance cellulolytic
4

Similar Publications

Cutting-edge advances in strain and process engineering for boosting cellulase production in Trichoderma reesei.

Bioresour Technol

December 2024

Key Laboratory of Shandong Microbial Engineering, School of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong 250353, People's Republic of China; Department of Chemical and Petroleum Engineering, University of Calgary, 2500 University Drive, NW, Calgary, Alberta, Canada. Electronic address:

Low-cost production of cellulases is a key factor in advancing the commercialization of lignocellulosic biorefinery. Thus far, Trichoderma reesei is the leading cellulase producer for biorefinery applications. Over 70 years of research, considerable advancements have been made in comprehending the mechanisms underlying cellulases biosynthesis and secretion in T.

View Article and Find Full Text PDF

β-glucosidases (BGLs) are key enzymes in the depolymerization of cellulosic biomass, catalyzing the conversion of cello-oligosaccharides into glucose. This conversion is pivotal for enhancing the production of second-generation ethanol or other value-added products in biorefineries. However, the process is often cost-prohibitive due to the high enzyme loadings required.

View Article and Find Full Text PDF

Saccharification and co-fermentation of lignocellulosic biomass by a cockroach-gut bacterial symbiont and yeast cocktail for bioethanol production.

BMC Biotechnol

December 2024

Environmental Microbiology and Biotechnology Unit, Department of Microbiology, Faculty of Biological Sciences, University of Calabar, Calabar, Nigeria.

Background: The eco-friendly transformation of agro-industrial wastes through microbial bioconversion could address sustainability challenges in line with the United Nations' Sustainable Development Goals. The bulk of agro-industrial waste consists of lignocellulosic materials with fermentable sugars, predominantly cellulose and hemicellulose. A number of pretreatment options have been employed for material saccharification toward successful fermentation into second-generation bioethanol.

View Article and Find Full Text PDF

Engineering the secretome of Aspergillus niger for cellooligosaccharides production from plant biomass.

Microb Cell Fact

November 2024

Laboratory of Enzymology and Molecular Biology of Microorganisms (LEBIMO), Department of Biochemistry and Tissue Biology, Institute of Biology, Universidade Estadual de Campinas (UNICAMP), Campinas, SP, 13083-862, Brazil.

Background: Fermentation of sugars derived from plant biomass feedstock is crucial for sustainability. Hence, utilizing customized enzymatic cocktails to obtain oligosaccharides instead of monomers is an alternative fermentation strategy to produce prebiotics, cosmetics, and biofuels. This study developed an engineered strain of Aspergillus niger producing a tailored cellulolytic cocktail capable of partially degrading sugarcane straw to yield cellooligosaccharides.

View Article and Find Full Text PDF

Simultaneous saccharification and fermentation for D-lactic acid production using a metabolically engineered Escherichia coli adapted to high temperature.

Biotechnol Biofuels Bioprod

November 2024

Department of Cellular Engineering and Biocatalyst. Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, Col. Chamilpa, 62210, Cuernavaca, Morelos, México.

Article Synopsis
  • Escherichia coli JU15 is engineered to efficiently produce D-lactic acid from C5 and C6 sugars at 37 °C, but requires strains that can grow near 50 °C for optimal enzyme activity in lignocellulosic biomass processing.
  • The new strain GT48 was developed through adaptive evolution to thrive at temperatures up to 48 °C, successfully fermenting glucose to D-lactate at 47 °C with optimal pH at 6.3.
  • GT48 outperformed the original strain by producing D-lactate at significantly higher levels (over 1.4 times better) when used in a simultaneous saccharification and fermentation process without needing a pre-saccharification stage.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!