Highly-accelerated CEST Measurements in Three Dimensions with Linear Algebraic Modeling.

Proc Int Soc Magn Reson Med Sci Meet Exhib Int Soc Magn Reson Med Sci Meet Exhib

Division of MR Research, Department of Radiology, Johns Hopkins University, Baltimore, MD, United States.

Published: May 2016

CEST MRI can provide valuable molecular level information in vivo, but its translation to routine clinics is hindered by long imaging times. Regional average CEST measurements often suffice for quantitative evaluation, diagnosis, and treatment assessment, while allowing much shorter scan times. Recently, the spectroscopy with linear algebraic modeling (SLAM) method was adapted for CEST MRI in two dimensions (2D), directly obtaining compartmental-average measurements manifold faster than conventional CEST. Here, the SLAM CEST method is extended from 2D to 3D, and applied to patients with brain tumors with acceleration factors of up to 98-fold.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5479684PMC

Publication Analysis

Top Keywords

cest measurements
8
linear algebraic
8
algebraic modeling
8
cest mri
8
cest
5
highly-accelerated cest
4
measurements three
4
three dimensions
4
dimensions linear
4
modeling cest
4

Similar Publications

Brain temperature mapping based on chemical exchange saturation transfer signal at 2 ppm.

Quant Imaging Med Surg

January 2025

Paul. C. Lauterbur Research Centers for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.

Background: Brain temperature signifies the thermal homeostasis of the tissue, and may serve as a marker for neuroprotective therapy. Currently, it remains challenging to map the human brain temperature with high spatial resolution. The thermal dependence of chemical exchange saturation transfer (CEST) effects of endogenous labile protons may provide a promising mechanism for the absolute brain temperature imaging.

View Article and Find Full Text PDF

Background: The imbalance of glutamate (Glu) and gamma-aminobutyric acid (GABA) neurotransmitter system plays a crucial role in the pathogenesis of Alzheimer's disease (AD). Riluzole is a Glu modulator originally approved for amyotrophic lateral sclerosis that has shown potential neuroprotective effects in various neurodegenerative disorders. However, whether riluzole can improve Glu and GABA homeostasis in AD brain and its related mechanism of action remain unknown.

View Article and Find Full Text PDF

Innovative perspectives on metal free contrast agents for MRI: Enhancing imaging efficacy, and AI-driven future diagnostics.

Acta Biomater

January 2025

Institute of Smart Biomedical Materials, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, PR China. Electronic address:

The U.S. Food and Drug Administration (FDA) has issued a boxed warning and mandated additional safety measures for all gadolinium-based contrast agents (GBCAs) used in clinical magnetic resonance imaging (MRI) due to their prolonged retention in the body and associated adverse health effects.

View Article and Find Full Text PDF

A new nuclear Overhauser enhancement (NOE)-mediated saturation transfer MRI signal at -1.6 ppm, potentially from choline phospholipids and termed NOE(-1.6), has been reported in biological tissues at high magnetic fields.

View Article and Find Full Text PDF

This study presents the first in vivo measurement of transcytolemmal water exchange in the brain using a novel Magnetic Resonance technique. We extend previous applications of Chemical Exchange Saturation Transfer (CEST) to examine water exchange across cellular membranes in late-stage chicken embryo brains. The immature blood-brain barrier at this stage allows Gadolinium-Based Contrast Agents (GBCAs) to penetrate the brain's interstitial space, sensitizing the CEST effect to water exchange between intra- and extracellular environments.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!