Benchmarking laminar fMRI: Neuronal spiking and synaptic activity during top-down and bottom-up processing in the different layers of cortex.

Neuroimage

Department of Vision & Cognition, Netherlands Institute for Neuroscience, Meibergdreef 47, 1105 BA, Amsterdam, The Netherlands; Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research, VU University, De Boelelaan 1085, 1081HV, Amsterdam, The Netherlands; Psychiatry Department, Academic Medical Center, Postbus 22660, 1100DD, Amsterdam, The Netherlands.

Published: August 2019

High resolution laminar fMRI is beginning to probe responses in the different layers of cortex. What can we expect this exciting new technique to discover about cortical processing and how can we verify that it is producing an accurate picture of the underlying laminar differences in neural processing? This review will address our knowledge of laminar cortical circuitry gained from electrophysiological studies in macaque monkeys with a focus on the primary visual cortex, as this area has been most often targeted in both laminar electrophysiological and fMRI studies. We will review how recent studies are attempting to verify the accuracy of laminar fMRI by recreating the known laminar profiles of various neural tuning properties. Furthermore, we will examine how feedforward and feedback-related neural processes engage different cortical layers, producing canonical patterns of spiking and synaptic activity as estimated by the analysis of current-source density. These results provide a benchmark for recent studies aiming to examine the profiles of bottom-up and top-down processes with laminar fMRI. Finally, we will highlight particularly useful paradigms and approaches which may help us to understand processing in the different layers of the human cerebral cortex.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.neuroimage.2017.06.045DOI Listing

Publication Analysis

Top Keywords

laminar fmri
16
spiking synaptic
8
synaptic activity
8
processing layers
8
layers cortex
8
laminar
7
fmri
5
benchmarking laminar
4
fmri neuronal
4
neuronal spiking
4

Similar Publications

NORDIC denoising on VASO data.

Front Neurosci

January 2025

Functional Magnetic Resonance Imaging (FMRI) Core, NIH, National Institute of Mental Health, Bethesda, MD, United States.

The use of submillimeter resolution functional magnetic resonance imaging (fMRI) is increasing in popularity due to the prospect of studying human brain activation non-invasively at the scale of cortical layers and columns. This method, known as laminar fMRI, is inherently signal-to-noise ratio (SNR)-limited, especially at lower field strengths, with the dominant noise source being of thermal origin. Furthermore, laminar fMRI is challenged with signal displacements due to draining vein effects in conventional gradient-echo blood oxygen level-dependent (BOLD) imaging contrasts.

View Article and Find Full Text PDF

Predictive acoustical processing in human cortical layers.

bioRxiv

January 2025

Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, The Netherlands.

In our dynamic environments, predictive processing is vital for auditory perception and its associated behaviors. Predictive coding formalizes inferential processes by implementing them as information exchange across cortical layers and areas. With laminar-specific blood oxygenation level dependent we measured responses to a cascading oddball paradigm, to ground predictive auditory processes on the mesoscopic human cortical architecture.

View Article and Find Full Text PDF

Hepatic encephalopathy may trigger cortical laminar necrosis (CLN), which is characterized by diffuse symmetric cortical lesions. We report a 56-year-old woman with liver cirrhosis who presented with prolonged floor station, reduced alertness and left hemiplegia. Blood ammonia level was elevated.

View Article and Find Full Text PDF

Exploring methodological frontiers in laminar fMRI.

Psychoradiology

November 2024

Brain Health Institute, National Center for Mental Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine and School of Psychology, Shanghai 200030, the People Republic of China.

This review examines the methodological challenges and advancements in laminar functional magnetic resonance imaging (fMRI). With the advent of ultra-high-field MRI scanners, laminar fMRI has become pivotal in elucidating the intricate micro-architectures and functionalities of the human brain at a mesoscopic scale. Despite its profound potential, laminar fMRI faces significant challenges such as signal loss at high spatial resolution, limited specificity to laminar signatures, complex layer-specific analysis, the necessity for precise anatomical alignment, and prolonged acquisition times.

View Article and Find Full Text PDF

Background: Lumbar burst fracture combined with lamina fracture is a special type of spinal fracture. Neither CT nor MRI can accurately determine it. The present study aims to investigate the clinical value of 3D CT/MRI fusion imaging in the treatment of lumbar burst fracture complicated with lamina fracture.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!