RNA-binding proteins (RBPs) are essential regulators of gene expression that act through a variety of mechanisms to ensure the proper post-transcriptional regulation of their target RNAs. RBPs in multiple species have been identified as playing crucial roles during development and as having important functions in various adult organ systems, including the heart, nervous, muscle, and reproductive systems. ETR-1, a highly conserved ELAV-Type RNA-binding protein belonging to the CELF/Bruno protein family, has been previously reported to be involved in C. elegans muscle development. Animals depleted of ETR-1 have been previously characterized as arresting at the two-fold stage of embryogenesis. In this study, we show that ETR-1 is expressed in the hermaphrodite somatic gonad and germ line, and that reduction of ETR-1 via RNA interference (RNAi) results in reduced hermaphrodite fecundity. Detailed characterization of this fertility defect indicates that ETR-1 is required in both the somatic tissue and the germ line to ensure wild-type reproductive levels. Additionally, the ability of ETR-1 depletion to suppress the published WEE-1.3-depletion infertility phenotype is dependent on ETR-1 being reduced in the soma. Within the germline of etr-1(RNAi) hermaphrodite animals, we observe a decrease in average oocyte size and an increase in the number of germline apoptotic cell corpses as evident by an increased number of CED-1::GFP and acridine orange positive apoptotic germ cells. Transmission Electron Microscopy (TEM) studies confirm the significant increase in apoptotic cells in ETR-1-depleted animals, and reveal a failure of the somatic gonadal sheath cells to properly engulf dying germ cells in etr-1(RNAi) animals. Through investigation of an established engulfment pathway in C. elegans, we demonstrate that co-depletion of CED-1 and ETR-1 suppresses both the reduced fecundity and the increase in the number of apoptotic cell corpses observed in etr-1(RNAi) animals. Combined, this data identifies a novel role for ETR-1 in hermaphrodite gametogenesis and in the process of engulfment of germline apoptotic cell corpses.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5603194PMC
http://dx.doi.org/10.1016/j.ydbio.2017.06.015DOI Listing

Publication Analysis

Top Keywords

apoptotic cell
16
cell corpses
16
germline apoptotic
12
etr-1
10
rna-binding protein
8
engulfment germline
8
increase number
8
germ cells
8
etr-1rnai animals
8
apoptotic
6

Similar Publications

Coumarins, a group of naturally occurring compounds, have been reported to demonstrate anticancer potential. These substances, distinguished by their combined benzene and α-pyrone rings, have been demonstrated to impact multiple cellular mechanisms essential for the initiation and advancement of cancer. These agents work in different ways that prevent different tumor cells from growing, spreading, and increasing.

View Article and Find Full Text PDF

In this study, the copper(II) complex [Cu(chromoneTSC)Cl]•0.5HO•0.0625CHOH (where chromoneTSC = -Ethyl-2-((4-oxo-4H-chromen-3-yl)methylene)-hydrazinecarbothioamide) was synthesized and characterized; then used to carry out studies in combination with berberine chloride (BBC).

View Article and Find Full Text PDF

Background: Acute kidney injury (AKI) is a life-threatening clinical syndrome with no effective treatment currently available. This study aims to investigate whether Iron-Quercetin complex (IronQ) pretreatment can enhance the therapeutic efficacy of Mesenchymal stem cells (MSCs) in AKI and explore the underlying mechanisms.

Methods: A cisplatin-induced AKI model was established in male C57BL/6 mice, followed by the intravenous administration of 1x10ˆ6 MSCs or IronQ-pretreated MSCs (MSC).

View Article and Find Full Text PDF

Inorganic arsenic modulates cell apoptosis by regulating Argonaute 2 expression via the p53 pathway.

Toxicol Res (Camb)

January 2025

Yunnan Provincial Key Laboratory of Public Health and Biosafety and School of Public Health, Kunming Medical University, No. 1168 Chunrongxi Road, Chenggong, Kunming, Yunnan 650500, China.

This study explores the role of Argonaute 2 (AGO2) in the induction of apoptosis by arsenic in 16HBE cells and investigates the association between AGO2 expression and arsenic exposure in a human population. By silencing AGO2 with siRNA, we examined its impact on cell viability and apoptosis using CCK-8, HO-PI, and JC-1 assays, complemented by qRT-PCR and Western blot analyses for gene and protein expressions. Our findings revealed a significant correlation between AGO2 expression and levels of exposure to inorganic arsenic (iAs), which was more pronounced than with other arsenic forms such as monomethylarsonic (MMA) and dimethylarsinic acids (DMA).

View Article and Find Full Text PDF

Despite significant breakthroughs in frontline cancer research and chemotherapy for hepatocellular carcinoma (HCC), many of the suggested drugs have high toxic side effects and resistance, limiting their clinical utility. Exploring potential therapeutic targets or novel combinations with fewer side effects is therefore crucial in combating this dreadful disease. The current study aims to use a novel combination of ponatinib and gossypol against the HepG2 cell line.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!