Normalizing the gene dosage of Dyrk1A in a mouse model of Down syndrome rescues several Alzheimer's disease phenotypes.

Neurobiol Dis

Department of Physiology and Pharmacology, Faculty of Medicine, University of Cantabria, Santander, Spain. Electronic address:

Published: October 2017

The intellectual disability that characterizes Down syndrome (DS) is primarily caused by prenatal changes in central nervous system growth and differentiation. However, in later life stages, the cognitive abilities of DS individuals progressively decline due to accelerated aging and the development of Alzheimer's disease (AD) neuropathology. The AD neuropathology in DS has been related to the overexpression of several genes encoded by Hsa21 including DYRK1A (dual-specificity tyrosine-(Y)-phosphorylation regulated kinase 1A), which encodes a protein kinase that performs crucial functions in the regulation of multiple signaling pathways that contribute to normal brain development and adult brain physiology. Studies performed in vitro and in vivo in animal models overexpressing this gene have demonstrated that the DYRK1A gene also plays a crucial role in several neurodegenerative processes found in DS. The Ts65Dn (TS) mouse bears a partial triplication of several Hsa21 orthologous genes, including Dyrk1A, and replicates many DS-like abnormalities, including age-dependent cognitive decline, cholinergic neuron degeneration, increased levels of APP and Aβ, and tau hyperphosphorylation. To use a more direct approach to evaluate the role of the gene dosage of Dyrk1A on the neurodegenerative profile of this model, TS mice were crossed with Dyrk1A KO mice to obtain mice with a triplication of a segment of Mmu16 that includes this gene, mice that are trisomic for the same genes but only carry two copies of Dyrk1A, euploid mice with a normal Dyrk1A dosage, and CO animals with a single copy of Dyrk1A. Normalizing the gene dosage of Dyrk1A in the TS mouse rescued the density of senescent cells in the cingulate cortex, hippocampus and septum, prevented cholinergic neuron degeneration, and reduced App expression in the hippocampus, Aβ load in the cortex and hippocampus, the expression of phosphorylated tau at the Ser202 residue in the hippocampus and cerebellum and the levels of total tau in the cortex, hippocampus and cerebellum. Thus, the present study provides further support for the role of the Dyrk1A gene in several AD-like phenotypes found in TS mice and indicates that this gene could be a therapeutic target to treat AD in DS.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.nbd.2017.06.010DOI Listing

Publication Analysis

Top Keywords

gene dosage
12
dosage dyrk1a
12
cortex hippocampus
12
dyrk1a
11
normalizing gene
8
dyrk1a mouse
8
alzheimer's disease
8
including dyrk1a
8
dyrk1a gene
8
cholinergic neuron
8

Similar Publications

Drug Development.

Alzheimers Dement

December 2024

Department of Neurosciences, University of California, San Diego, La Jolla, CA, USA.

Background: Increased APP gene dosage is both necessary and sufficient to result in Down Syndrome Alzheimer's Disease (DSAD) in humans and AD-related degenerative changes in mouse models of DS.

Method: We tested antisense oligonucleotides (ASOs) designed to suppress APP expression via RNAseH1-mediated degradation in the Dp(16)1Yey or Dp(16) model of Down Syndrome. Dp(16) is trisomic for human chromosome 21 syntenic regions on murine chromosome 16, containing 115 genes including APP.

View Article and Find Full Text PDF

Therapeutic human papillomavirus (HPV) DNA vaccine is an attractive option to control existed HPV infection and related lesions. The two early viral oncoproteins, E6 and E7, are continuously expressed in most HPV-related pre- and cancerous cells, and are ideal targets for therapeutic vaccines. We have previously developed an HPV 16 DNA vaccine encoding a modified E7/HSP70 (mE7/HSP70) fusion protein, which demonstrated significant antitumor effects in murine models.

View Article and Find Full Text PDF

Sexual dimorphism in lung transcriptomic adaptations in fetal alcohol spectrum disorders.

Respir Res

January 2025

Department of Obstetrics and Gynecology, C.S. Mott Center for Human Growth and Development, School of Medicine, Wayne State University, 275 E Hancock St, Rm 195, Detroit, MI, 48201, USA.

Current fetal alcohol spectrum disorders (FASD) studies primarily focus on alcohol's actions on the fetal brain although respiratory infections are a leading cause of morbidity/mortality in newborns. The limited studies examining the pulmonary adaptations in FASD demonstrate decreased surfactant protein A and alveolar macrophage phagocytosis, impaired differentiation, and increased risk of Group B streptococcal pneumonia with no study examining sexual dimorphism in adaptations. We hypothesized that developmental alcohol exposure in pregnancy will lead to sexually dimorphic fetal lung morphological and immune adaptations.

View Article and Find Full Text PDF

Background: loss of function manifests across a broad spectrum of phenotypes, ranging from severe prenatal onset to asymptomatic cases. Bilateral periventricular nodular heterotopia (BPNH) consistently occurs in affected individuals. This retrospective study involving French patients with BPNH evaluates the prevalence of gene dosage anomalies and investigates genotype-phenotype correlations in a large cohort of French patients with BPNH.

View Article and Find Full Text PDF

Intestinal microbiota could respond to dietary fibres that are fermented by the gut microbiota, like prebiotics. Nevertheless, the dynamics of intestinal microbial community longitudinally after prebiotics intake, are still largely unknown. The current study unrevealed the successional process of intestinal microbial community after inulin supplementation, and the effect of supplementation dosage thereof, based on analysis of 16S rRNA gene sequences in C57BL/6 mice.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!