New depsides from the roots of Salvia miltiorrhiza and their radical-scavenging capacity and protective effects against HO-induced H9c2 cells.

Fitoterapia

School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China.; Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Haike Road #501, Shanghai 201203, China.. Electronic address:

Published: September 2017

Phytochemical investigation of the roots of Salvia miltiorrhiza led to isolations of two new depsides (1-2), along with thirteen known compounds (3-15). Their structures and relative stereochemistry were elucidated by NMR spectral (H and C NMR, HSQC, HMBC), CD and HR-ESIMS data analyses. The absolute configuration of 1 was determined by comparison of the experimental and calculated ECD spectra. All the depsides (1-10) were found to exhibit stronger free radical scavenging capacity (ranging from 2.62 to 22.05μM) than diterpenoids (11-15, IC>100μM), among which Salvianolic acid A and Salvianolic acid B were the most potent compounds. Additionally, most of depsides (1, 3, 5, 7, 8, 9, 10) possessed significant protective effects against HO-induced H9c2 apoptosis in low concentrations. The negative mode collision-induced dissociations of compound 1 and 2 were featured by the α-cleavage and β-cleavage to lose danshensu (198Da) and caffeic acid (180Da), respectively, while α,β-dihydroxybenzenes depsides (8-hydroxy) showed characteristic neutral elimination of HO.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.fitote.2017.06.018DOI Listing

Publication Analysis

Top Keywords

roots salvia
8
salvia miltiorrhiza
8
protective effects
8
effects ho-induced
8
ho-induced h9c2
8
salvianolic acid
8
depsides
5
depsides roots
4
miltiorrhiza radical-scavenging
4
radical-scavenging capacity
4

Similar Publications

Background: Salinity stress is a significant challenge in agriculture, particularly in regions where soil salinity is increasing due to factors such as irrigation practices and climate change. This stress adversely affects plant growth, development, and yield, posing a threat to the cultivation of economically important plants like . This study aims to evaluate the effectiveness by proactively applying indole-3-butyric acid (IBA) to cuttings as a practical and efficient method for mitigating the adverse effects of salinity stress.

View Article and Find Full Text PDF

The prevalence of urological diseases increases with age, and lower urinary tract symptoms (LUTSs) are the most common problem. Natural compounds with minimal side effects for the improvement in LUTSs are of ongoing interest. extract (SAGX) has shown potential in preclinical studies for its effects on LUTSs.

View Article and Find Full Text PDF

, the valuable traditional Chinese medicinal plant, has been used in clinics for thousands of years. The water-soluble salvianolic acid compounds are bioactive substances used in treating many diseases. Gibberellins (GAs) are growth-promoting phytohormones that regulate plant growth and development.

View Article and Find Full Text PDF

Carotenoid Cleavage Dioxygenase Gene Enhances Tanshinone Accumulation and Drought Resistance in .

Int J Mol Sci

December 2024

Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China, Shaanxi Normal University, Xi'an 710062, China.

Danshen ( Bunge) is a perennial herbaceous plant of the Salvia genus in the family Lamiaceae. Its dry root is one of the important traditional Chinese herbal medicines with a long officinal history. The yield and quality of are influenced by various factors, among which drought is one of the most significant types of abiotic stress.

View Article and Find Full Text PDF

This study evaluated the salinity tolerance of five populations of subg. ( and ). The aims of the study were to assess essential oil components, as well as growth and physiological parameters of two species in response to salt stress.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!