The dysregulated proliferation, migration, apoptosis and angiogenesis of endothelial cells are involved in diabetic endothelial dysfunction. The circulating salusin-β levels were increased in diabetic patients, and salusin-β contributes to diabetic cardiomyopathy in rats. However, the roles of salusin-β in diabetes mellitus-induced endothelial dysfunction are not fully understood. Herein, we demonstrated the increased expressions of salusin-β in human umbilical vein endothelial cells (HUVECs) cultured in HG medium. Exposure of HUVECs to HG inhibited the proliferation, migration, and angiogenesis, retarded cell cycle progression of endothelial cells, which were rescued by knockdown of salusin-β. We also established that silencing of salusin-β with adenoviruse-mediated shRNA reduced high glucose-induced apoptosis by up-regulating Bcl-2 expression and down-regulating Bax and caspase-3 expressions. Blockade of salusin-β ameliorated HG-induced suppression of adenosine monophosphate-activated protein kinase (AMPK) signaling pathway. Of note, pretreatment with AMPK inhibitor Compound C abolished salusin-β silencing-mediated endothelial protective effects. In summary, our results highlighted the involvement of salusin-β in HG-related endothelial dysfunction, and salusin-β contributed high glucose-induced endothelial injury via inactivation of AMPK signaling pathway.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bbrc.2017.06.126 | DOI Listing |
Stem Cell Rev Rep
January 2025
Institute of Stem Cell and Translational Cancer Research, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taoyuan, Taiwan.
Human-induced pluripotent stem cell (hiPSC) technology has been applied in pathogenesis studies, drug screening, tissue engineering, and stem cell therapy, and patient-specific hiPSC-derived cardiomyocytes (hiPSC-CMs) have shown promise in disease modeling, including diabetic cardiomyopathy. High glucose (HG) treatment induces lipotoxicity in hiPSC-CMs, as evidenced by changes in cell size, beating rate, calcium handling, and lipid accumulation. Empagliflozin, an SGLT2 inhibitor, effectively mitigates the hypertrophic changes, abnormal calcium handling, and contractility impairment induced by HG.
View Article and Find Full Text PDFAnal Cell Pathol (Amst)
January 2025
Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, China.
Fibroblasts play a crucial role in diabetic wound healing, and their senescence is the cause of delayed wound repair. It was reported that fibroblasts can secrete exosomes that can mediate a vital role in diabetic complications. Our purpose is to examine the biological function of high glucose (HG)-induced senescent fibroblasts from the perspective of exosomes and reveal the mechanism at cellular and animal levels.
View Article and Find Full Text PDFJ Pharmacol Sci
February 2025
The Fourth Hospital of Changsha, Department of Anesthesiology, 410006, Changsha, Hunan Province, China. Electronic address:
Background: Renal tubular injury (RTI) is one of the key characteristics of diabetic nephropathy (DN). Penehyclidine hydrochloride (PHC) was an anticholinergic drug with renoprotective effects, but its specific mechanism in the treatment of DN was still unclear.
Methods: We treated different diabetic mouse models and high glucose-induced RTI models by PHC.
Zhongguo Dang Dai Er Ke Za Zhi
January 2025
Department of Endocrine, Genetics and Metabolism, Children's Hospital Affiliated to Xi'an Jiaotong University, Xi'an 710003, China.
Maturity-onset diabetes of the young (MODY) is a special type of diabetes characterized by clinical features including early onset of diabetes (before 30 years of age), autosomal dominant inheritance, impaired glucose-induced insulin secretion, and hyperglycemia. So far, 14 types of MODY have been reported, accounting for about 1%-5% of the patients with diabetes. MODY often presents with an insidious onset, and although 14 subtypes have been identified for MODY, it is frequently misdiagnosed as type 1 or type 2 diabetes due to overlapping clinical features and high costs and limitations of genetic testing.
View Article and Find Full Text PDFNeuropharmacology
January 2025
Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu Province, 221004, China. Electronic address:
Oxidative stress and inflammation play important roles in diabetic-associated cognitive dysfunction (DACD). Swietenolide (Std), isolated from the fruit of Swietenia macrophylla King, exhibits various potent pharmacological activities, including antioxidant, anti-inflammatory, and anti-tumor properties. However, the effects of Std on DACD remains unexplored.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!