Background: The role of necroptosis in myocardial injury has not been fully characterized. Here we examined roles of mitochondrial permeability transition pore (mPTP) and autophagy in necroptosis of cardiomyocytes.
Methods And Results: In H9c2 cells, necroptosis was induced by treatment with TNF-α (TNF) and z-VAD-fmk (zVAD) for 24h, and necroptotic death was determined by LDH release (as % of total). TNF/zVAD increased LDH release from 16.6±4.3% to 60.6±2.7%, and the LDH release was suppressed by necrostatin-1 (29.4±4.0%), a RIP1 inhibitor, and by siRNA-mediated knockdown of RIP3 (27.7±2.0%), confirming RIP1-RIP3-dependent necroptosis. TNF/zVAD-induced necroptosis was not attenuated by mPTP inhibitors or GSK-3β inhibitors. TNF/zVAD increased LC3-II level, but the change was not further enhanced by bafilomycin A1. The increase of LC3-II by TNF/zVAD was associated with suppression of both autophagic flux and LC3-LAMP1 co-localization. TNF/zVAD did not modify phosphorylation of Akt, p70s6K, AMPK, ULK1 or VASP but significantly increased RIP1-p62 binding and conversely reduced p62-LC3 binding. Rapamycin inhibited RIP1-p62 and RIP1-RIP3 interactions induced by TNF/zVAD and partly restored autophagic flux and suppressed LDH release in TNF/zVAD-treated cells. The effect of rapamycin on LDH release was reduced by knockdown of Atg5 expression. Knockdown of p62 by siRNA augmented LDH release by TNF/zVAD.
Conclusion: Suppression of autophagic flux contributes to RIP1-RIP3 interaction and necroptosis of cardiomyocytes, and sequestration of p62 from its interaction with LC3-II by p62-RIP1 interaction possibly underlies the suppressed autophagy. The mPTP is unlikely to play a major role in execution of necroptosis in cardiomyocytes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.yjmcc.2017.06.008 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!