Functional Magnetic Resonance Imaging (fMRI) represents a powerful tool with which to examine brain functioning and development in typically developing pediatric groups as well as children and adolescents with clinical disorders. However, fMRI data can be highly susceptible to misinterpretation due to the effects of excessive levels of noise, often related to head motion. Imaging children, especially with developmental disorders, requires extra considerations related to hyperactivity, anxiety and the ability to perform and maintain attention to the fMRI paradigm. We discuss a number of methods that can be employed to minimize noise, in particular movement-related noise. To this end we focus on strategies prior to, during and following the data acquisition phase employed primarily within our own laboratory. We discuss the impact of factors such as experimental design, screening of potential participants and pre-scan training on head motion in our adolescents with developmental disorders and typical development. We make some suggestions that may minimize noise during data acquisition itself and finally we briefly discuss some current processing techniques that may help to identify and remove noise in the data. Many advances have been made in the field of pediatric imaging, particularly with regard to research involving children with developmental disorders. Mindfulness of issues such as those discussed here will ensure continued progress and greater consistency across studies.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.neuroimage.2017.05.007DOI Listing

Publication Analysis

Top Keywords

developmental disorders
12
adolescents developmental
8
typical development
8
head motion
8
children developmental
8
minimize noise
8
data acquisition
8
noise data
8
noise
6
reprint minimizing
4

Similar Publications

Perineuronal nets on CA2 pyramidal cells and parvalbumin-expressing cells differentially regulate hippocampal dependent memory.

J Neurosci

December 2024

Neurobiology Laboratory, National Institute of Environmental Health Sciences, Division of Intramural Research, National Institute of Health, Research Triangle Park, North Carolina 27713, USA

Perineuronal nets (PNNs) are a specialized extracellular matrix that surround certain populations of neurons, including (inhibitory) parvalbumin (PV) expressing-interneurons throughout the brain and (excitatory) CA2 pyramidal neurons in hippocampus. PNNs are thought to regulate synaptic plasticity by stabilizing synapses and as such, could regulate learning and memory. Most often, PNN functions are queried using enzymatic degradation with chondroitinase, but that approach does not differentiate PNNs on CA2 neurons from those on adjacent PV cells.

View Article and Find Full Text PDF

Introduction: Previous randomised controlled trials (RCTs) have indicated a protective role of pregnancy supplementation with fish oil and high-dose vitamin D, respectively, on offspring asthma, infections and several other disorders in early childhood. However, current evidence is not considered sufficient for recommending these supplements in pregnancy. In two RCTs, we aim to investigate whether these protective effects can be confirmed in larger trials with the goal of changing clinical practice and improving child health.

View Article and Find Full Text PDF

Phenotypic variability in a family with an inherited KAT6A frameshift variant.

Eur J Med Genet

December 2024

Department of Clinical Genetics, Aarhus University Hospital, Aarhus, Denmark; Centre for Rare Diseases, Pediatrics and Adolescent Medicine, Aarhus University Hospital, Aarhus, Denmark; Department of Clinical Medicine, Aarhus University, Denmark.

KAT6A syndrome or Arboleda-Tham Syndrome (ARTHS; OMIM #616268) is a syndromic neurodevelopmental disorder mainly presenting with variable degrees of intellectual disability (ID) and developmental delay (DD), especially speech delay, hypotonia and autism spectrum disorders/behavioral problems. Multiple organ-systems including eyes, heart, gastrointestinal and neurological system can be involved. Other phenotypic features with a suggested association to KAT6A include immune dysfunction and pituitary anomalies.

View Article and Find Full Text PDF

Cortisol and C-reactive protein (CRP) regulation in severe mental disorders.

Psychoneuroendocrinology

December 2024

Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK; Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, UK. Electronic address:

Background: People with schizophrenia (SZ) and bipolar disorder (BD) show abnormalities in the biological stress system and low-grade inflammation. However, whether the hypothalamic-pituitary-adrenal (HPA) axis-immune regulation is disrupted in SZ and BD, is yet to be determined.

Methods: Cortisol and C-reactive protein (CRP) were measured in blood samples collected at or before 10 am in participants with SZ (N = 257), BD (N = 153), and healthy controls (N = 40).

View Article and Find Full Text PDF

Purpose: Children with epilepsy are at an increased risk of developing psychiatric comorbidities, which exacerbate the overall disease burden. However, these disorders are often underreported in developing countries. This study, conducted in a developing country, aims to evaluate the frequency of psychiatric disorders and associated factors in a large cohort of children with epilepsy.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!