The morphological regeneration and functional restoration of bladder defects by a novel scaffold and adipose-derived stem cells in a rat augmentation model.

Stem Cell Res Ther

Department of Urology and Andrology, Shanghai Renji Hospital, Shanghai Jiao Tong University, School of Medicine, No. 145 Middle Shandong Road, Shanghai, 200001, People's Republic of China.

Published: June 2017

Background: Due to the multilineage differentiation ability and paracrine role of adipose-derived stem cells (ASCs) for bladder defect repair, various scaffolds have been applied in combination with ASCs to promote bladder regeneration and restore bladder function. However, the low survival rate of ASCs and the difficulty of promoting bladder functional recovery are still unsolved. To explore these problems, we investigated the feasibility of a novel scaffold seeded with ASCs in a rat model of bladder augmentation.

Methods: A novel autologous myofibroblast (AM)-silk fibroin (SF) scaffold was harvested after subcutaneously prefabricating the bladder acellular matrix grafts (BAMG) and SF by removing the BAMG. The AM-SF scaffolds were then seeded with ASCs (AM-SF-ASCs). Fifty percent supratrigonal cystectomies were performed followed by augmenting the cystectomized defects with AM-SF scaffolds or AM-SF-ASCs. The histological and functional assessments of bladders were performed 2, 4, and 12 weeks after surgery while the ASCs were tracked in vivo.

Results: For bladder tissue regeneration, immunofluorescence analysis revealed that AM-SF-ASCs (the experimental group) promoted better morphological regeneration of the urothelium, vessels, bladder smooth muscle, and nerve than AM-SF scaffolds (the control group). Regarding functional restoration, the AM-SF-ASC group exhibited higher bladder compliance and relatively normal micturition pattern compared to the AM-SF group. In addition, a certain number of surviving ASCs could be found in vivo 12 weeks after implantation, and some of them had differentiated into smooth muscle cells.

Conclusions: The AM-SF scaffolds with ASCs could rapidly promote bladder morphological regeneration and improved bladder urinary function. In addition, the bag-shaped structure of the AM-SF scaffold can improve the survival of ASCs for at least 12 weeks. This strategy of AM-SF-ASCs has a potential to repair large-scale bladder defects in the clinic in the future.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5482942PMC
http://dx.doi.org/10.1186/s13287-017-0597-zDOI Listing

Publication Analysis

Top Keywords

am-sf scaffolds
16
bladder
13
morphological regeneration
12
ascs
9
functional restoration
8
bladder defects
8
novel scaffold
8
adipose-derived stem
8
stem cells
8
promote bladder
8

Similar Publications

The morphological regeneration and functional restoration of bladder defects by a novel scaffold and adipose-derived stem cells in a rat augmentation model.

Stem Cell Res Ther

June 2017

Department of Urology and Andrology, Shanghai Renji Hospital, Shanghai Jiao Tong University, School of Medicine, No. 145 Middle Shandong Road, Shanghai, 200001, People's Republic of China.

Background: Due to the multilineage differentiation ability and paracrine role of adipose-derived stem cells (ASCs) for bladder defect repair, various scaffolds have been applied in combination with ASCs to promote bladder regeneration and restore bladder function. However, the low survival rate of ASCs and the difficulty of promoting bladder functional recovery are still unsolved. To explore these problems, we investigated the feasibility of a novel scaffold seeded with ASCs in a rat model of bladder augmentation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!