Most of the knowledge we have on the molecular mechanisms of transcription factor mediated reprogramming comes from studies conducted in induced pluripotency. Recently however, a few studies investigated the mechanisms of cellular reprogramming in direct and indirect transdifferentiation, which allows us to explore whether shared parallel mechanisms can be drawn. Moreover, there are currently several computational tools that have been developed to predict and enhance the reprogramming process by reconstructing the transcriptional networks of reprogramming cells. These new tools have the potential to greatly benefit the field of reprogramming, providing us with new approaches that can transform our understanding of the initiation, progression and successful completion of cellular fate transition.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.gde.2017.06.001 | DOI Listing |
Mol Biol Rep
January 2025
Medical Sociology and Psychobiology, Department of Health and Physical Activity, University of Potsdam, 14469, Potsdam, Germany.
Background: Depression constitutes a risk factor for osteoporosis, but underlying molecular and cellular mechanisms are not fully understood. MiRNAs influence gene expression and are carried by extracellular vesicles (EV), affecting cell-cell communication.
Aims: (1) Identify the difference in miRNA expression between depressed patients and healthy controls; (2) Analyze associations of these miRNAs with bone turnover markers; (3) Analyze target genes of differentially regulated miRNAs and predict associated pathways regarding depression and bone metabolism.
Neurochem Res
January 2025
Department of Neurology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, 226001, China.
Our aim was to evaluate the regulation of messenger RNAs (mRNAs) and biological pathways by long non-coding RNAs (lncRNAs) and circular RNAs (circRNAs) in ischemic stroke. We employed weighted gene co-expression network analysis (WGCNA) to construct two co-expression networks for mRNAs with circRNAs and lncRNAs, respectively, to investigate their association with ischemic stroke. We compared the overlap of mRNAs and biological pathways in the stroke-associated modules of the two networks.
View Article and Find Full Text PDFBiol Aujourdhui
January 2025
Sorbonne Université, CNRS, Inserm U1156, Institut de Biologie Paris Seine, Laboratoire de Biologie du Développement/UMR7622, 9 Quai St-Bernard, 75005 Paris, France.
The advent of high-throughput omics data and the generation of new algorithms provide the biologists with the opportunity to explore living processes in the context of systems biology aiming at revealing the gene interactions, the networks underlying complex cellular functions. In this article, we discuss two methods for gene network reconstruction, WGCNA (Weighted Gene Correlation Network Analysis) developed by Steve Horvath and collaborators in 2008, and MIIC (Multivariate Information-based Inductive Causation) developed by Hervé Isambert and his team in 2017 and 2024. These two methods are complementary, WGCNA generating undirected networks in which most gene-to-gene interactions are indirect, while MIIC reveals direct interactions and some causal links.
View Article and Find Full Text PDFFront Immunol
January 2025
Postdoctoral Workstation, Liaocheng People's Hospital, Liaocheng, China.
Background: This study aims to identify the hub genes and immune-related pathways in acute myeloid leukemia (AML) to provide new theories for immunotherapy.
Methods: We use bioinformatics methods to find and verify the hub gene. At the same time, we use the results of GSEA enrichment analysis to find immune-related mediators.
World J Microbiol Biotechnol
January 2025
Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, 72 Binhai Road, Jimo, Qingdao, 266237, China.
Catabolic plasmids are critical factors in the degradation of recalcitrant xenobiotics, such as dioxins. Understanding the persistence and evolution of native catabolic plasmids is pivotal for controlling their function in microbial remediation. Here, we track the fitness and evolution of Rhodococcus sp.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!