Antileukemic activity and cellular effects of the antimalarial agent artesunate in acute myeloid leukemia.

Leuk Res

Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Duarte, CA 91010, USA; Gehr Family Center for Leukemia Research City of Hope Medical Center, Duarte, CA 91010, USA. Electronic address:

Published: August 2017

The artimisinins are a class of antimalarial compounds whose antiparasitic activity is mediated by induction of reactive oxygen species (ROS). Herein, we report that among the artimisinins, artesunate (ARTS), an orally bioavailable compound has the most potent antileukemic activity in AML models and primary patients' blasts. ARTS was most cytotoxic to the FLT3-ITD+ AML MV4-11 and MOLM-13 cells (IC values of 1.1 and 0.82μM respectively), inhibited colony formation in primary AML and MDS cells and augmented cytotoxicity of chemotherapeutics. ARTS lowered cellular BCL-2 level via ROS induction and increased the cytotoxicity of the BCL-2 inhibitor venetoclax (ABT-199). ARTS treatment led to cellular and mitochondrial ROS accumulation, double stranded DNA damage, loss of mitochondrial membrane potential and induction of the intrinsic mitochondrial apoptotic cascade in AML cell lines. The antileukemic activity of ARTS was further confirmed in MV4-11 and FLT3-ITD+ primary AML cell xenografts as well as MLL-AF9 syngeneic murine AML model where ARTS treatment resulted in significant survival prolongation of treated mice compared to control. Our results demonstrate the potent preclinical antileukemic activity of ARTS as well as its potential for a rapid transition to a clinical trial either alone or in combination with conventional chemotherapy or BCL-2 inhibitor, for treatment of AML.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.leukres.2017.05.007DOI Listing

Publication Analysis

Top Keywords

antileukemic activity
16
primary aml
8
bcl-2 inhibitor
8
arts treatment
8
aml cell
8
activity arts
8
arts
7
aml
7
antileukemic
4
activity cellular
4

Similar Publications

Background: Xanthones are dubbed as putative lead-like molecules for cancer drug design and discovery. This study was aimed at the synthesis, characterization, and target fishing of novel xanthone derivatives.

Methods: The products of reactions of xanthydrol with urea, thiourea, and thiosemicarbazide reacted with α-haloketones to prepare the thiazolone compounds.

View Article and Find Full Text PDF

Current treatments for acute myeloid leukemias (AMLs) cure fewer than 30 % of patients. This low efficacy is due, in part, to the inter-patient and intra-patient heterogeneity of AMLs; accordingly, all current AML treatment regimens involve drug combinations (polypharmacy). A recently-completed clinical trial in relapsed/refractory AML using a combination of two newer targeted antileukemics, the BCL-2 inhibitor venetoclax (VEN) plus the FLT3 inhibitor gilteritinib (GIL), yielded highly promising results for this two-drug polypharmacy combination.

View Article and Find Full Text PDF

Discovery of a potent PROTAC degrader for RNA demethylase FTO as antileukemic therapy.

Acta Pharm Sin B

December 2024

School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China.

The fat mass and obesity-associated protein (FTO) is an RNA demethylase required for catalytic demethylation of -methyladenosine (mA); it is highly expressed and functions as an oncogene in acute myeloid leukemia (AML). Currently, the overarching objective of targeting FTO is to precisely inhibit the catalytic activity. Meanwhile, whether FTO degradation also exerts antileukemic effects remains unknown.

View Article and Find Full Text PDF

Ikarugamycin is a member of the natural product family of the polycyclic tetramate macrolactams (PoTeMs). The compound exhibits a diverse range of biological activities, including antimicrobial, antiprotozoal, anti-leukemic, and anti-inflammatory properties. In addition, it interferes with several crucial cellular functions, such as oxidized low-density lipoprotein uptake in macrophages, Nef-induced CD4 cell surface downregulation, and mechanisms of endocytosis.

View Article and Find Full Text PDF

T-cell acute lymphoblastic leukemia (T-ALL) is an aggressive hematological malignancy with a poor prognosis and limited options for targeted therapies. Identifying new molecular targets to develop novel therapeutic strategies is the pressing immediate issue in T-ALL. Here, we observed high expression of WD Repeat-Containing Protein 5 (WDR5) in T-ALL; with in vitro and in vivo models we demonstrated the oncogenic role of WDR5 in T-ALL by activating cell cycle signaling through its new downstream effector, ATPase family AAA domain-containing 2 (ATAD2).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!