Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Independent of the substrate structure and reaction conditions, 3-amino-2-cyanothioacrylamides, which contain two active electrophilic centers, were shown to interact with various active halo methylene compounds under mild conditions to afford 5-acyl-2-amino-3-cyanothiophenes as the only products. A series of new polyfunctional thiophene derivatives with a rare combination of functionalities were synthesized, and their photophysical properties were experimentally and computationally investigated. The calculated electronic characteristics of the ground and excited states were compared to the experimental results, which provided a good understanding of the relationship between the optoelectronic properties and the molecular structures. After absorption of light quanta, the systems populate an intramolecular charge-transfer (ICT) Franck-Condon state, and emission occurs from a twisted ICT minimum.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/asia.201700721 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!