Silymarin inhibits adipogenesis in the adipocytes in grass carp Ctenopharyngodon idellus in vitro and in vivo.

Fish Physiol Biochem

Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation, Ministry of Agriculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510380, People's Republic of China.

Published: December 2017

In this study, two experiments were performed to explore the function of silymarin in adipogenesis in grass carp (Ctenopharyngodon idellus) using in vitro and in vivo models. In experiment 1, differentiated grass carp pre-adipocytes were treated with silymarin for 6 days. Treatment with 100 μg mLsilymarin (SM100 group) significantly reduced triglyceride accumulation at day 6. The adipogenic gene expression levels of PPARγ, C/EBPα, SREBP1c, FAS, SCD1, and LPL, and the protein expression level of PPARγ were significantly down-regulated in the SM100 group. Additionally, the SM100 group had significantly lower reactive oxygen species production and reduced glutathione contents compared with the control in vitro. In experiment 2, the juvenile grass carp (mean body weight= 27.4 ± 0.17 g) were fed six isonitrogenous and isocaloric diets in a factorial design containing 0, 100, or 200 mg kg silymarin (SM0, SM100, SM200) associated with either 4 or 8% lipid levels (low lipid, LL, and high lipid, HL, respectively) for 82 days. The results demonstrated that dietary silymarin supplementation significantly reduced the elevated intraperitoneal fat index in grass carp fed with high-lipid diets, and the gene expression of adipogenesis (PPARγ, FAS) when supplemented with dietary silymarin was notably lower than when no silymarin was supplemented under the high-lipid diets. Thus, our data suggest that silymarin suppressed lipid accumulation in grass carp both in vitro and in vivo, and the effect might be due to an influence on the expression of adipogenesis factors and ROS production partly associated with effects on antioxidant capability.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10695-017-0387-7DOI Listing

Publication Analysis

Top Keywords

grass carp
24
vitro vivo
12
sm100 group
12
silymarin
8
carp ctenopharyngodon
8
ctenopharyngodon idellus
8
idellus vitro
8
gene expression
8
dietary silymarin
8
high-lipid diets
8

Similar Publications

Relations between microplastic contamination and stress biomarkers under two seasonal conditions in wild carps, mullets and flounders.

Mar Environ Res

January 2025

ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Departamento de Estudos de Populações, Laboratório de Ecotoxicologia e Ecologia, (ECOTOX), Rua de Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal; CIIMAR / CIMAR-LA - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Research Team of Aquatic Ecotoxicology and One Health, and Research Team of Contaminant Pathways in Marine Environment, Terminal de Cruzeiros do Porto de Leixões, 4450-208, Matosinhos, Portugal. Electronic address:

Potential effects of microplastics (MP, plastic particles <5 mm) on the levels of multiple stress biomarkers were investigated in wild fish populations of Cyprinus carpio, Mugil cephalus, Platichthys flesus captured in the Minho River estuary located in the Iberian Peninsula. Specimens were collected in March and September 2018, corresponding to the end of winter and summer, respectively. Based on the concentration of MP determined by FT-IR analysis and morphological inspection, fishes from each species were divided into two groups: ≤0.

View Article and Find Full Text PDF

Chlorpromazine (CPZ) is an abused sedative that is extensively metabolized in organisms. However, the metabolic pathway of CPZ in aquatic organisms is still unclear. In this study, CPZ metabolites was analyzed in grass carp exposed to CPZ in the raising water using ultrahigh-performance liquid chromatography coupled with quadrupole Orbitrap mass spectrometry (UHPLC-Q-Orbitrap MS).

View Article and Find Full Text PDF

Parasitic infestations are one of the most economically important disease conditions in the Indian major carps including mrigal, Cirrhinus mrigala. This study reported the biosafety and tissue withdrawal of in-feed administered antiparasitic drug, emamectin benzoate (EMB). To evaluate the biosafety of the drug, behaviour, growth and tissue changes in Cirrhinus mrigala was recorded the following in-feed administration of EMB up to 10 times (T1-50 μg kg fish day (1×), T2-125 μg kg fish day (2.

View Article and Find Full Text PDF

Astragaloside IV can mitigate heat stress-induced tissue damage through modulation of the Keap1-Nrf2 signaling pathway in grass carp (Ctenopharyngodon idella).

Fish Shellfish Immunol

January 2025

Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Animal Science and Technology, Foshan University, Foshan, Guangdong, 528225, China. Electronic address:

This study investigated the potential protective effect of AS-IV against heat stress-induced tissue damage in grass carp (Ctenopharyngodon idella). Grass carp were injected intraperitoneally with 0, 2, 4, and 8 mg/kg of AS-IV for three consecutive days, and then subjected to heat stress (35 ± 0.5 °C); thereafter, histopathological analyses of the liver and spleen were performed at 0, 6, 24, and 48 h, respectively.

View Article and Find Full Text PDF

Emamectin benzoate (EMB) is an antibiotic insecticide pesticide modified from avermectin. In the current study, we performed an in-depth investigation of the protective effects of epicatechin on EMB-induced liver injury in common carps. The carps were cultured in an aquatic environment containing 2.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!