Translocation of Trace Elements from Sewage Sludge Amendments to Plants in a Reclaimed Area.

Bull Environ Contam Toxicol

Department of Land Reclamation and Environmental Development, University of Agriculture, Al. Mickiewicza 24/28, 30-059, Kraków, Poland.

Published: August 2017

The goal of the study was to evaluate bioaccumulation of trace elements in plants grown in post-mining soils amended with the biosolids material. Phaseolus vulgaris was investigated on the laboratory scale, and a mixture of grasses, Melilotus albus, Beta vulgaris, Zea mays L. and Miscanthus × giganteus were evaluated on the field scale. The results of the research showed that P. vulgaris fertilized with the Carbocrash substrate was able to grow. In addition, growth was enhanced following stimulation with gibberellic acid. Transfer of trace elements should be evaluated on the plot scale. Therefore, we monitored the level of trace elements on an experimental plot in a reclaimed area. Crops plants were sown in multi-year periods. During the growing season the mixture of grasses and crop plants had a low bioaccumulation factor, which also showed a positive effect of fertilization with the Carbocrash substrate.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00128-017-2128-0DOI Listing

Publication Analysis

Top Keywords

trace elements
16
reclaimed area
8
mixture grasses
8
carbocrash substrate
8
translocation trace
4
elements
4
elements sewage
4
sewage sludge
4
sludge amendments
4
plants
4

Similar Publications

Electrical excitability of neuronal networks based on the voltage threshold of electrical stimulation.

Sci Rep

December 2024

State Key Laboratory of Digital Medical Engineering, Southeast University, Nanjing, 210096, China.

Microelectrode arrays (MEAs) have been widely used in studies on the electrophysiological features of neuronal networks. In classic MEA experiments, spike or burst rates and spike waveforms are the primary characteristics used to evaluate the neuronal network excitability. Here, we introduced a new method to assess the excitability using the voltage threshold of electrical stimulation.

View Article and Find Full Text PDF

Mammalian SLC39A13 promotes ER/Golgi iron transport and iron homeostasis in multiple compartments.

Nat Commun

December 2024

Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.

Iron is a potent biochemical, and accurate homeostatic control is orchestrated by a network of interacting players at multiple levels. Although our understanding of organismal iron homeostasis has advanced, intracellular iron homeostasis is poorly understood, including coordination between organelles and iron export into the ER/Golgi. Here, we show that SLC39A13 (ZIP13), previously identified as a zinc transporter, promotes intracellular iron transport and reduces intracellular iron levels.

View Article and Find Full Text PDF

The emergence of single-atom catalysts offers exciting prospects for the green production of hydrogen peroxide; however, their optimal local structure and the underlying structure-activity relationships remain unclear. Here we show trace Fe, up to 278 mg/kg and derived from microbial protein, serve as precursors to synthesize a variety of Fe single-atom catalysts containing FeNO (1 ≤ x ≤ 4) moieties through controlled pyrolysis. These moieties resemble the structural features of nonheme Fe-dependent enzymes while being effectively confined on a microbe-derived, electrically conductive carbon support, enabling high-current density electrolysis.

View Article and Find Full Text PDF

Treatment wetlands have emerged as a potential remediation option for oil-sands process affected waters (OSPW) which contains a suite of organic and inorganic constituents of potential concern. The aim of this study was to evaluate the fate of metals in a treatment wetland exposed to OSPW. Data was collected over three operational seasons testing freshwater and OSPW inputs at the Kearl Treatment Wetland in northern Alberta.

View Article and Find Full Text PDF

Cancer, a disease threatening human life, is caused by the disturbance of the normal cell cycle, which results in the spontaneous growth of normal and malignant cells, the lack of differentiation between the two, and consequently malignant growths. Nowadays, various synthetic agents are applied for cancer therapy; nevertheless, reports have confirmed that these chemical agents are associated with various adverse complications. This experimental study was designed to assess the anti-tumor activities of zinc nanoparticles (ZnNPs) green synthesized by the () extract against Ehrlich solid tumors (EST) in mice.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!