Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Nitric oxide is recognized as a signaling molecule involved in a broad range of physiological processes in plants including sexual reproduction. NO has been detected in the pollen grain at high levels and regulates pollen tube growth. Previous studies demonstrated that NO as well as ROS are produced in the olive reproductive tissues in a stage- and tissue-specific manner. The aim of this study was to assess the production of NO throughout the germination of olive (Olea europaea L.) pollen in vitro. The NO fluorescent probe DAF-2DA was used to image NO production in situ, which was correlated to pollen viability. Moreover, by means of a fluorimetric assay we showed that growing pollen tubes release NO. GSNO -a mobile reservoir of NO, formed by the S-nitrosylation of NO with reduced glutathione (GSH) - was for the first time detected and quantified at different stages of pollen tube growth using a LC-ES/MS analysis. Exogenous NO donors inhibited both pollen germination and pollen tube growth and these effects were partially reverted by the specific NO-scavenger c-PTIO. However, little is known about how NO affects the germination process. With the aim of elucidating the putative relevance of protein S-nitrosylation and Tyr-nitration as important post-translational modifications in the development and physiology of the olive pollen, a de novo assembled and annotated reproductive transcriptome from olive was challenged in silico for the putative capability of transcripts to become potentially modified by S-nitrosylation/Tyr-nitration according to well-established criteria. Numerous gene products with these characteristics were identified, and a broad discussion as regards to their potential role in plant reproduction was built after their functional classification. Moreover, the importance of both S-nitrosylation/Tyr-nitrations was experimentally assessed and validated by using Western blotting, immunoprecipitation and proteomic approaches.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.niox.2017.06.005 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!