Hepatitis B virus (HBV) is the smallest partially double-stranded DNA virus known to infect humans. Worldwide, more than 50% of hepatocellular carcinoma (HCC) cases are related to chronic Hepatitis B. Development of HCC from normal liver cells is characterized by changes in cell surface N-glycans, which can promote the invasive behavior of tumor cells, leading ultimately to the progression of cancer. However, little is understood about the cell surface N-glycans of HBV-infected liver cells. We try to address this by taking advantage of the HepAD38 cell line, which can replicate HBV in the absence of tetracycline [tet(-)] in growth medium. In the presence of tetracycline [tet(+)], this cell line is free from the virus due to the repression of pregenomic (pg) RNA synthesis. In culture medium without tetracycline, cells express viral pgRNA and start to secrete virions into the supernatant. Here we studied the expression of glycosyltransferases and the cell surface N-glycan composition of tet(+) and tet(-) HepAD38. Among the glycosyltransferases upregulated by the expression of HBV were GnT-II, GnT-IVa, ST6Gal1, and GnT-V, whereas GnT-I, GnT-III, β4GalT1, and FUT8 were downregulated. About one-third of the total cell surface N-glycans found on tet(-)HepAD38 were sialylated. As for tet(+)HepAD38, sialylation was 6% lower compared to the tet(-) cells. Neither treatment changed the cell surface N-glycans expression of the total complex type or the total fucosylated type, which were about 50% or 60%, respectively. Our results showed that the expression of HBV triggers higher sialylation in HepAD38 cells. Altogether, the results show that HBV expression triggered the alteration of the cell surface N-glycosylation pattern and the expression levels of glycosyltransferases of HepAD38 cells.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.virusres.2017.06.003 | DOI Listing |
J Mater Chem B
January 2025
State Key Laboratory of Biopharmaceutical Preparation and Delivery, Chinese Academy of Sciences, Beijing 100190, P. R. China.
Adjuvants can enhance an immunological response, which is an important part of vaccine research. Pickering bubbles have been a mega-hit for biomedical applications, including visualization and targeted drug delivery. However, there have been no studies on Pickering bubbles as an immunological adjuvant, and the special properties and structures of Pickering bubbles may play an important role in immunization.
View Article and Find Full Text PDFFront Immunol
January 2025
Department of Biomedicine, Aarhus University, Aarhus, Denmark.
The innate immune system plays a critical role in the rapid recognition and elimination of pathogens through pattern recognition receptors (PRRs). Among these PRRs are the C-type lectins (CTLs) langerin, mannan-binding lectin (MBL), and surfactant protein D (SP-D), which recognize carbohydrate patterns on pathogens. Each represents proteins from different compartments of the body and employs separate effector mechanisms.
View Article and Find Full Text PDFJ Tradit Complement Med
November 2024
Key Laboratory of Basic and Application Research of Beiyao, Heilongjiang University of Chinese, Harbin, 150040, China.
Background And Aim: Goupi Plaster (GP) is topical traditional Chinese medicine preparation. It has been used to treat Knee Osteoarthritis (KOA) in clinical practice of traditional Chinese medicine (TCM). However, the mechanisms of GP relieve KOA are poorly understood.
View Article and Find Full Text PDFCell Surf
June 2025
School of Natural and Environmental Sciences, Newcastle University, Newcastle Upon Tyne NE1 7RU, UK.
Alginates are abundant linear polysaccharides produced by brown algae and some bacteria. They have multiple biological roles and important medical and commercial uses. Alginates are comprised of D-mannuronic acid (M) and L-guluronic acid (G) and the ratios and distribution patterns of M and G profoundly impact their physiological and rheological properties.
View Article and Find Full Text PDFiScience
January 2025
Department of Oral Biology, Dr. Gerald Niznick College of Dentistry, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 0W2, Canada.
Bacterial interspecies interactions shape microbial communities and influence the progression of polymicrobial infections. FemI-FemR-FemA, a cell-surface signaling system, in , is involved in the uptake of iron-chelating mycobactin produced by spp. In this report, we present the data that indicates the -PA1909 operon is positively regulated by ExsA, a master regulator for the type three secretion system (T3SS), connecting the Fem system with T3SS.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!