Understanding cellular processes at molecular levels in health and disease requires the knowledge of protein-protein interactions (PPIs). In line with this, identification of PPIs at genome-wide scale is highly valuable to understand how different cellular pathways are interconnected, and it eventually facilitates designing effective drugs against certain PPIs. Furthermore, investigating PPIs at a small laboratory scale for deciphering certain biochemical pathways has been demanded for years. In this regard, yeast two hybrid system (Y2HS) has proven an extremely useful tool to discover novel PPIs, while Y2HS derivatives and novel yeast-based assays are contributing significantly to identification of protein-drug/inhibitor interaction at both large- and small-scale set-ups. These methods have been evolving over time to provide more accurate, reproducible and quantitative results. Here we briefly describe different yeast-based assays for identification of various protein-protein/drug/inhibitor interactions and their specific applications, advantages, shortcomings, and improvements. The broad range of yeast-based assays facilitates application of the most suitable method(s) for each specific need.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ejcb.2017.06.003 | DOI Listing |
Molecules
January 2025
Institute of Chemistry, Faculty of Chemistry and Geosciences, Vilnius University, Naugarduko Str. 24, LT-03225 Vilnius, Lithuania.
This research presents a simple procedure for chemically modifying yeast () cells with nickel hexacyanoferrate (NiHCF) and ferric hexacyanoferrate, also known as Prussian blue (PB), to increase the conductivity of the yeast cell wall. Using linear sweep voltammetry, NiHCF-modified yeast and PB-modified yeast (NiHCF/yeast and PB/yeast, respectively) were found to have better cell wall conductivity in [Fe(CN)] and glucose-containing phosphate-buffered solution than unmodified yeast. Spectrophotometric analysis showed that the modification of yeast cells with NiHCF had a less harmful effect on yeast cell viability than the modification of yeast cells with PB.
View Article and Find Full Text PDFMicrob Cell Fact
January 2025
Chair of Biochemistry of Microorganisms, Faculty of Life Sciences: Food, Nutrition and Health, University of Bayreuth, 95326, Kulmbach, Germany.
Background: During the last decades, the advancements in synthetic biology opened the doors for a profusion of cost-effective, fast, and ecologically friendly medical applications priorly unimaginable. Following the trend, the genetic engineering of the baker's yeast, Saccharomyces cerevisiae, propelled its status from an instrumental ally in the food industry to a therapy and prophylaxis aid.
Main Text: In this review, we scrutinize the main applications of engineered S.
Int J Biol Macromol
December 2024
Institute of Bioengineering, Chongqing Academy of Animal Sciences, Chongqing 402460, China. Electronic address:
Yeast shows promise as a delivery system for drugs and vaccines due to its specific targeting and immunogenic properties. The objective of this research is to create novel and effective yeast-based methods for delivering subunit vaccines. Through the modification of yeast expression plasmids and optimization of expression techniques, a new dual-expression system has been developed.
View Article and Find Full Text PDFFront Genet
December 2024
College of Agronomy, Qingdao Agricultural University, Qingdao, China.
Drought is a persistent and serious threat to crop yield and quality. The identification and functional characterization of drought tolerance-related genes is thus vital for efforts to support the genetic improvement of drought-tolerant crops. Barley is highly adaptable and renowned for its robust stress resistance, making it an ideal subject for efforts to explore genes related to drought tolerance.
View Article and Find Full Text PDFStructure
December 2024
Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, 2200 Copenhagen, Denmark. Electronic address:
Gene variants resulting in insertions or deletions of amino acid residues (indels) have important consequences for evolution and are often linked to disease, yet, compared to missense variants, the effects of indels are poorly understood and predicted. We developed a sensitive protein folding sensor based on the complementation of uracil auxotrophy in yeast by circular permutated orotate phosphoribosyltransferase (CPOP). The sensor reports on the folding of disease-linked missense variants and de-novo-designed proteins.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!