Searching for improved antagonists of α-adrenoceptors, a thorough theoretical study comparing the aromaticity of phenyl-, pyridinyl-, thiophenyl- and thiazolylguanidinium derivatives has been carried out [at M06-2X/6-311++G(p,d) computational level] confirming that thiophene and thiazole will be good 'ring equivalents' to benzene in these guanidinium systems. Based on these results, a small but chemically diverse library of guanidine derivatives (15 thiophenes and 2 thiazoles) were synthesised to explore the effect that the bioisosteric change has on affinity and activity at α-adrenoceptors in comparison with our previously studied phenyl derivatives. All compounds were tested for their α-adrenoceptor affinity and unsubstituted guanidinothiophenes displayed the strongest affinities in the same range as the phenyl analogues. In the case of cycloakyl systems, thiophenes with 6-membered rings showed the largest affinities, while for the thiazoles the 5-membered analogue presented the strongest affinity. From all the compounds tested for noradrenergic activity, only one compound exhibited agonistic activity, while two compounds showed very promising antagonism of α-adrenoceptors.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ejmech.2017.06.008 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!