Since the publication of the 2004 update to the American Association of Physicists in Medicine (AAPM) Task Group No. 43 Report (TG-43U1) and its 2007 supplement (TG-43U1S1), several new low-energy photon-emitting brachytherapy sources have become available. Many of these sources have satisfied the AAPM prerequisites for routine clinical purposes and are posted on the Brachytherapy Source Registry managed jointly by the AAPM and the Imaging and Radiation Oncology Core Houston Quality Assurance Center (IROC Houston). Given increasingly closer interactions among physicists in North America and Europe, the AAPM and the Groupe Européen de Curiethérapie-European Society for Radiotherapy & Oncology (GEC-ESTRO) have prepared another supplement containing recommended brachytherapy dosimetry parameters for eleven low-energy photon-emitting brachytherapy sources. The current report presents consensus datasets approved by the AAPM and GEC-ESTRO. The following sources are included: I sources (BEBIG model I25.S17, BEBIG model I25.S17plus, BEBIG model I25.S18, Elekta model 130.002, Oncura model 9011, and Theragenics model AgX100); Pd sources (CivaTech Oncology model CS10, IBt model 1031L, IBt model 1032P, and IsoAid model IAPd-103A); and Cs (IsoRay Medical model CS-1 Rev2). Observations are included on the behavior of these dosimetry parameters as a function of radionuclide. Recommendations are presented on the selection of dosimetry parameters, such as from societal reports issuing consensus datasets (e.g., TG-43U1, AAPM Report #229), the joint AAPM/IROC Houston Registry, the GEC-ESTRO website, the Carleton University website, and those included in software releases from vendors of treatment planning systems. Aspects such as timeliness, maintenance, and rigor of these resources are discussed. Links to reference data are provided for radionuclides (radiation spectra and half-lives) and dose scoring materials (compositions and mass densities). The recent literature is examined on photon energy response corrections for thermoluminescent dosimetry of low-energy photon-emitting brachytherapy sources. Depending upon the dosimetry parameters currently used by individual physicists, use of these recommended consensus datasets may result in changes to patient dose calculations. These changes must be carefully evaluated and reviewed with the radiation oncologist prior to their implementation.

Download full-text PDF

Source
http://dx.doi.org/10.1002/mp.12430DOI Listing

Publication Analysis

Top Keywords

dosimetry parameters
16
low-energy photon-emitting
12
photon-emitting brachytherapy
12
brachytherapy sources
12
consensus datasets
12
bebig model
12
model
11
2004 update
8
aapm
8
aapm task
8

Similar Publications

Telomere shortening has been linked to type 2 diabetes (T2D) and its complications. This study aims to determine whether leukocyte telomere length (LTL) could be a useful marker in predicting the onset of complications in patients suffering from T2D. Enrolled study subjects were 147 T2D patients.

View Article and Find Full Text PDF

Photobiomodulation (PBM) therapy, a therapeutic approach utilizing low-level light, has garnered significant attention for its potential to modulate various biological processes. This study aimed at optimizing and investigating the effects of PBM on angiogenesis and mitochondrial metabolic activity. In vitro experiments using human umbilical vein endothelial cells (HUVECs) and vascular smooth muscle cells (VSMCs) were performed to assess PBM's impacts on cell migration, proliferation, endogenous protoporphyrin IX production, mitochondrial membrane potential, Rhodamine 123 fluorescence lifetime, mitochondrial morphology, and oxygen consumption.

View Article and Find Full Text PDF

Using the solid-state reaction technique, varied YSiO phosphors activated by europium (Eu) ions at varied concentrations were made at calcination temperatures of 1000 °C and 1250 °C during sintering in an air environment. The XRD technique identified the monoclinic structure, and the FTIR technique was used to analyze the generated phosphors. Photoluminescence emission and excitation patterns were measured using varying concentrations of Eu ions.

View Article and Find Full Text PDF

Advanced oxidation processes (AOPs), including ionizing radiation treatment, are increasingly recognized as an effective method for the degradation of pharmaceutical pollutants, including non-steroidal anti-inflammatory drugs (NSAIDs). Nabumetone (NAB), a widely used NSAID prodrug, poses an environmental risk due to its persistence in aquatic ecosystems and its potential toxicity to non-target organisms. In this study, the radiolytic degradation of NAB was investigated under different experimental conditions (dose rate, radical scavenging, pH, matrix effect), and the toxicity of its degradation products was evaluated.

View Article and Find Full Text PDF

[18F]Tetrafluoroborate: a new NIS PET/CT radiopharmaceutical. An overview focused on differentiated thyroid cancer.

Eur Thyroid J

January 2025

G Treglia, Repubblica e Cantone Ticino Ente Ospedaliero Cantonale, Bellinzona, Switzerland.

Background: In relapsing differentiated thyroid cancer (DTC), the in vivo evaluation of natrium-iodine symporter (NIS) expression is pivotal in the therapeutic planning and is achieved by [131/123I]Iodine whole-body scan. However, these approaches have low sensitivity due to the low sensitivity due to the low resolution of SPECT. [18F]Tetrafluoroborate (TFB) has been proposed as a viable alternative, which could outperform [131/123I]Iodine scans owing to the superior PET resolution.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!