Metabolites linked to changes in choline kinase-α (CK-α) expression and drug resistance, which contribute to survival and autophagy mechanisms, are attractive targets for breast cancer therapies. We previously reported that autophagy played a causative role in driving tamoxifen (TAM) resistance of breast cancer cells (BCCs) and was also promoted by CK-α knockdown, resulting in the survival of TAM-resistant BCCs. There is no comparative study yet about the metabolites resulting from BCCs with TAM-resistance and CK-α knockdown. Therefore, the aim of this study was to explore the discriminant metabolic biomarkers responsible for TAM resistance as well as CK-α expression, which might be linked with autophagy through a protective role. A total of 33 intracellular metabolites, including a range of amino acids, energy metabolism-related molecules and others from cell extracts of the parental cells (MCF-7), TAM-resistant cells (MCF-7/TAM) and CK-α knockdown cells (MCF-7/shCK-α, MCF-7/TAM/shCK-α) were analyzed by proton nuclear magnetic resonance spectroscopy (1H-NMRS). Principal component analysis (PCA) and partial least square discriminant analysis (PLS-DA) revealed the existence of differences in the intracellular metabolites to separate the 4 groups: MCF-7 cells, MCF-7/TAM cells, MCF-7-shCK-α cells, and MCF-7/TAM/shCK-α cells. The metabolites with VIP>1 contributed most to the differentiation of the cell groups, and they included fumarate, UA (unknown A), lactate, myo-inositol, glycine, phosphocholine, UE (unknown E), glutamine, formate, and AXP (AMP/ADP/ATP). Our results suggest that these altered metabolites would be promising metabolic biomarkers for a targeted therapeutic strategy in BCCs that exhibit TAM-resistance and aberrant CK-α expression, which triggers a survival and drug resistance mechanism.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5482454PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0179773PLOS

Publication Analysis

Top Keywords

breast cancer
12
ck-α expression
12
ck-α knockdown
12
cells
9
cancer cells
8
magnetic resonance
8
resonance spectroscopy
8
drug resistance
8
tam resistance
8
metabolic biomarkers
8

Similar Publications

Breast cancer remains the leading cause of mortality among women with cancer. This article delves into the intricate relationship between breast cancer and cancer stem cells (CSCs), emphasizing advanced methods for their identification and isolation. The key isolation techniques, such as the mammosphere formation assay, surface marker identification, Side Population assay, and Aldehyde Dehydrogenase assay, are critically examined.

View Article and Find Full Text PDF

Epidermal growth factor receptor (EGFR) plays an important role in the regulation of cell proliferation and migration [1]. It forms a homodimer or heterodimer with other ErbB receptor family members to activate downstream signaling. Emerging evidence indicates that the EGFR activity and downstream signaling are regulated by other proteins except its family members during tumorigenesis.

View Article and Find Full Text PDF

Purpose: Perfusion modeling presents significant opportunities for imaging biomarker development in breast cancer but has historically been held back by the need for data beyond the clinical standard of care (SoC) and uncertainty in the interpretability of results. We aimed to design a perfusion model applicable to breast cancer SoC dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) series with results stable to low temporal resolution imaging, comparable with published results using full-resolution DCE-MRI, and correlative with orthogonal imaging modalities indicative of biophysical markers.

Methods: Subsampled high-temporal-resolution DCE-MRI series were run through our perfusion model and resulting fits were compared for consistency.

View Article and Find Full Text PDF

Background: We aimed to investigate the clinical and molecular characteristics of different degrees of human epidermal growth factor receptor 2 (HER2) protein expression in HER2-negative breast cancer and the related factors affecting the efficacy of neoadjuvant chemotherapy in HER2-low breast cancer patients.

Methods: The study endpoint was pathological complete remission (PCR). Blood specimens and fresh cancer tissue samples were collected before neoadjuvant chemotherapy for whole-exon sequencing (WES) and RNA sequencing (RNA-seq), and patients were divided into a human epidermal growth factor receptor 2 (HER2)-low group and a HER2-0 group according to their HER2 expression status via bioinformatics analysis.

View Article and Find Full Text PDF

This study aimed to evaluate the efficacy of pyrotinib, an orally administered small molecule tyrosine kinase inhibitor, combined with neoadjuvant chemotherapy in treating patients with human epidermal growth factor receptor 2 (HER2)-positive breast cancer. Pyrotinib works by inhibiting the HER2 signaling pathway, thereby preventing tumor cell growth. This single-arm clinical trial aimed to assess the total pathological complete response (tpCR; ypT0/is and ypN0) rate as the primary endpoint.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!