Reaching the quantum optics limit of strong light-matter interactions between a single exciton and a plasmon mode is highly desirable, because it opens up possibilities to explore room-temperature quantum devices operating at the single-photon level. However, two challenges severely hinder the realization of this limit: the integration of single-exciton emitters with plasmonic nanostructures and making the coupling strength at the single-exciton level overcome the large damping of the plasmon mode. Here, we demonstrate that these two hindrances can be overcome by attaching individual J aggregates to single cuboid Au@Ag nanorods. In such hybrid nanosystems, both the ultrasmall mode volume of ∼71 nm^{3} and the ultrashort interaction distance of less than 0.9 nm make the coupling coefficient between a single J-aggregate exciton and the cuboid nanorod as high as ∼41.6 meV, enabling strong light-matter interactions to be achieved at the quantum optics limit in single open plasmonic nanocavities.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevLett.118.237401 | DOI Listing |
Nat Chem
January 2025
Department of Chemistry, University of California Irvine, Irvine, CA, USA.
Controlling reaction outcomes through external influences is a central goal in chemistry. Vibrational coupling between molecular vibrations and cavity modes is rapidly emerging as a distinct strategy compared with conventional thermochemical and photochemical methods; however, insight into the fundamental mechanisms remains limited. Here we investigate how vibrational weak and strong coupling in plasmonic nanocavities modifies the thermal dehydration of copper sulfate pentahydrate.
View Article and Find Full Text PDFJ Chem Phys
January 2025
Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 10617, Taiwan.
The quantum-electrodynamic non-adiabatic emission (QED-NAE) is a type of radiatively assisted vibronic de-excitation due to electromagnetic vacuum fluctuations on non-adiabatic processes. Building on our previous work [Tsai et al., J.
View Article and Find Full Text PDFSci Rep
January 2025
Terahertz Research Center, School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu, 610054, China.
Strong light-matter coupling occurs when the rate of energy exchange between the electromagnetic mode and the molecular ensemble exceeds the competitive dissipation process. Coupled photon molecules with near-field light-matter interactions may produce new hybridized states when they reach the strong coupling region. Tunable Terahertz (THz) meta materials can be used to design sensors, optical modulators, etc.
View Article and Find Full Text PDFACS Nano
January 2025
Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea.
Optical metasurfaces, arrays of nanostructures engineered to manipulate light, have emerged as a transformative technology in both research and industry due to their compact design and exceptional light control capabilities. Their strong light-matter interactions enable precise wavefront modulation, polarization control, and significant near-field enhancements. These unique properties have recently driven their application in biomedical fields.
View Article and Find Full Text PDFSci Adv
January 2025
State Key Laboratory of Extreme Photonics and Instrumentation, College of Optical Science and Engineering, International Research Center for Advanced Photonics, Zhejiang University, Hangzhou 310027, China.
Solution-processed semiconductor lasers are next-generation light sources for large-scale, bio-compatible and integrated photonics. However, overcoming their performance-cost trade-off to rival III-V laser functionalities is a long-standing challenge. Here, we demonstrate room-temperature continuous-wave perovskite polariton lasers exhibiting remarkably low thresholds of ~0.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!