Novel Metal-Insulator Transition at the SmTiO_{3}/SrTiO_{3} Interface.

Phys Rev Lett

Materials Department, University of California, Santa Barbara, California 93106-5050, USA.

Published: June 2017

We report on a metal-insulator transition (MIT) that is observed in an electron system at the SmTiO_{3}/SrTiO_{3} interface. This MIT is characterized by an abrupt transition at a critical temperature, below which the resistance changes by more than an order of magnitude. The temperature of the transition systematically depends on the carrier density, which is tuned from ∼1×10^{14} to 3×10^{14}  cm^{-2} by changing the SmTiO_{3} thickness. An analysis of the transport properties shows non-Fermi-liquid behavior and mass enhancement as the carrier density is lowered. We compare the MIT characteristics with those of known MITs in other material systems and show that they are distinctly different in several aspects. We tentatively conclude that both long-range Coulomb interactions and the fixed charge at the polar interface are likely to play a role in this MIT. The strong dependence on the carrier density makes this MIT of interest for field-tunable devices.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevLett.118.236803DOI Listing

Publication Analysis

Top Keywords

carrier density
12
metal-insulator transition
8
smtio_{3}/srtio_{3} interface
8
mit
5
novel metal-insulator
4
transition
4
transition smtio_{3}/srtio_{3}
4
interface report
4
report metal-insulator
4
transition mit
4

Similar Publications

This study thoroughly investigated the adsorption of Congo Red (CR) dye onto various microplastics (MPs), including high-density polyethylene (HDPE), polyvinyl chloride (PVC), low-density polyethylene (LDPE), polypropylene (PP) and polyethylene terephthalate (PET). Initial adsorption capacities (q) revealed that HDPE had the highest value (21.90 mg/g), followed by PVC (4.

View Article and Find Full Text PDF

Solid polymer electrolytes (SPEs) for symmetrical supercapacitors are proposed herein with activated carbon as electrodes and optimized solid polymer electrolyte membranes, which serve as the separators and electrolytes. We propose the design of a low-cost solid polymer electrolyte consisting of guanidinium nitrate (GuN) and poly(ethylene oxide) (PEO) with poly(vinylpyrrolidone) (PVP). Using the solution casting approach, blended polymer electrolytes with varying GuN weight percentage ratios of PVP and PEO are prepared.

View Article and Find Full Text PDF

Four quaternary Zintl phase thermoelectric (TE) materials belonging to the BaEuZnSb ( = 0.02(1), 0.04(1), 0.

View Article and Find Full Text PDF

Chitosan Micro/Nanocapsules in Action: Linking Design, Production, and Therapeutic Application.

Molecules

January 2025

Department of Chemical Engineering, Universitat Rovira i Virgili, Av. Països Catalans 26, Campus Sescelades, 43007 Tarragona, Spain.

pH sensitivity of chitosan allows for precise phase transitions in acidic environments, controlling swelling and shrinking, making chitosan suitable for drug delivery systems. pH transitions are modulated by the presence of cross-linkers by the functionalization of the chitosan chain. This review relays a summary of chitosan functionalization and tailoring to optimize drug release.

View Article and Find Full Text PDF

Mechanoluminescent (ML) materials emit light by trapping and releasing charge carriers under mechanical stress. However, previous studies do not fully reveal the relationship between emitting light intensity and mechanical stress, thereby affecting the accuracy of stress measurement. This study addresses this gap by systematically investigating ML cylinders with various sizes and loading paths using theoretical analysis and simulations, focusing on the maximum contact stress, equivalent stress distribution, and the relationship between the strain energy density and light intensity at the point of maximum contact stress.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!