Graphene and graphene-based materials have shown great promise in many technological applications, but their large-scale production and processing by simple and cost-effective means still constitute significant issues in the path of their widespread implementation. Here, we investigate a straightforward method for the preparation of a ready-to-use and low oxygen content graphene material that is based on electrochemical (anodic) delamination of graphite in aqueous medium with sodium halides as the electrolyte. Contrary to previous conflicting reports on the ability of halide anions to act as efficient exfoliating electrolytes in electrochemical graphene exfoliation, we show that proper choice of both graphite electrode (e.g., graphite foil) and sodium halide concentration readily leads to the generation of large quantities of single-/few-layer graphene nanosheets possessing a degree of oxidation (O/C ratio down to ∼0.06) lower than that typical of anodically exfoliated graphenes obtained with commonly used electrolytes. The halide anions are thought to play a role in mitigating the oxidation of the graphene lattice during exfoliation, which is also discussed and rationalized. The as-exfoliated graphene materials exhibited a three-dimensional morphology that was suitable for their practical use without the need to resort to any kind of postproduction processing. When tested as dye adsorbents, they outperformed many previously reported graphene-based materials (e.g., they adsorbed ∼920 mg g for methyl orange) and were useful sorbents for oils and nonpolar organic solvents. Supercapacitor cells assembled directly from the as-exfoliated products delivered energy and power density values (up to 15.3 Wh kg and 3220 W kg, respectively) competitive with those of many other graphene-based devices but with the additional advantage of extreme simplicity of preparation.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.7b04802DOI Listing

Publication Analysis

Top Keywords

graphite aqueous
8
sodium halide
8
low oxygen
8
oxygen content
8
content graphene
8
graphene-based materials
8
halide anions
8
graphene
7
electrochemical exfoliation
4
graphite
4

Similar Publications

Lipid peroxidation is a major process that determines the quality of various oil samples during their use and storage, in which the primary products are hydroperoxides (HP'). HP' are very stable compounds at ambient conditions and are harmful to human health. Therefore, the evaluation of the degree of oil oxidation is an excellent tool for ensuring food safety.

View Article and Find Full Text PDF

Graphite oxidation to graphene oxide (GO) is carried out using methods developed by Brodie (GO-B) and Hummers (GO-H). However, a comparison of the antibacterial properties based on the physicochemical properties has not been performed. Therefore, this paper outlines a comparative analysis of GO-H and GO-B on antibacterial efficacy against Gram-positive and Gram-negative bacterial cultures and biofilms in an aqueous environment and discusses which of the properties of these GO nanomaterials have the most significant impact on the antibacterial activity of these materials.

View Article and Find Full Text PDF

In this study, an efficient membrane composed of polysulfone and graphene oxide was developed and evaluated for its efficacy in chromium adsorption. Characterization of the synthesized membrane involved comprehensive analyses including scanning electron microscopy (SEM), transmission electron microscopy (TEM), thermogravimetric analysis (TGA) and Fourier-transform infrared spectroscopy (FTIR) to assess its structural properties. Subsequently, the membrane's performance in removing chromium from aqueous solutions was scrutinized, considering key operational parameters.

View Article and Find Full Text PDF

The sensitive Bisphenol A (BPA) detection by an electrochemical sensor based on gold nanoparticle-doped molecularly imprinted polymer was successfully improved. This study describes the development of a method for BPA detection in both aqueous solution and real water samples using N-methacroyl-(L)-cysteine methyl ester and N-methacryloyl-(L)-phenylalanine methyl ester coated pencil graphite electrodes modified with AuNPs by differential pulse voltammetry (DPV). Importantly, AuNPs, which increase the electroactivity, were used to increase the surface area of a BPA-imprinted pencil graphite electrode (MIP PGE) sensor.

View Article and Find Full Text PDF

Integration of different active sites by heterostructure engineering is pivotal to optimize the intrinsic activities of an oxygen electrocatalyst and much needed to enhance the performance of rechargeable Zn-air batteries (ZABs). Herein, a biphasic nanoarchitecture encased in in situ grown N-doped graphitic carbon (MnO/Co-NGC) with heterointerfacial sites are constructed. The density functional theory model reveals formation of lattice oxygen bridged heterostructure with pyridinic nitrogen atoms anchored Co species, which facilitate adsorption of oxygen intermediates.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!