Commercial Probiotic Products: A Call for Improved Quality Control. A Position Paper by the ESPGHAN Working Group for Probiotics and Prebiotics.

J Pediatr Gastroenterol Nutr

*Children's Hospital Zagreb, University of Zagreb School of Medicine, Zagreb, Croatia †Department of Translational Medical Sciences, Paediatric Section, and CEINGE Advanced Biotechnology, and European Laboratory for the Investigation of Food Induced Diseases (ELFID), University of Naples Federico II ‡Department of Translational Medical Sciences, Paediatric Section, University Federico II, Naples §Department of Paediatric Gastroenterology Division, Ospedale Pediatrico Giovanni XXIII University of Bari, Bari, Italy ||Department of Gastroenterology, Hepatology and Nutrition, University Medical Centre Ljubljana, University Children's Hospital Ljubljana, Ljubljana, Slovenia ¶Department IMDO, Vrije Universiteit Brussel, Brussels, Belgium #Institute for Gastroenterology, Nutrition and Liver Diseases, Schneider Children's Medical Center, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel **The Medical University of Warsaw, Department of Paediatrics, Warsaw, Poland ††UZ Brussel, Vrije Universiteit Brussel, Brussels, Belgium ‡‡Emma Children's Hospital-AMC and VU University Medical Center, Amsterdam, The Netherlands §§Ben-Gurion University, Faculty of Health Sciences, Beer-Sheva, Israel.

Published: July 2017

Probiotics have been proposed for a number of indications ranging from the hypothetical long-term immunomodulatory effects to proven benefits in the management of different clinical conditions.An increasing number of commercial products containing probiotics are available. In those products, irrespective if it is food, food supplement, medical food, or drug, the probiotic microorganisms have to be present in a sufficient number by the end of the shelf-life, to pass through the gastrointestinal tract resisting acid and bile, to colonize the gut, and to retain functional properties required to obtain the suggested beneficial effect. Finally, it should be contamination-free.Studies organized worldwide and summarized in this article have shown that inconsistencies and deviations from the information provided on the product label are surprisingly common. Frequently strains are misidentified and misclassified, products are occasionally contaminated, sometimes with even facultative or obligatory pathogens, strains are not viable, the labeled number of colonies cannot be verified, or the functional properties are diminished to the extent that preclude the proposed health benefit. As the probiotic preparations are commonly used for a wide range of conditions, the aim of the Working Group was to summarize results of the studies looking into the quality of the probiotic products and to raise the awareness of the important issue of their quality control.Based on the results obtained, we strongly suggest a more stringent quality control process. This process should ensure that the probiotic content as mentioned on the label meets the actual content throughout the shelf life of the product, while no contamination is present.

Download full-text PDF

Source
http://dx.doi.org/10.1097/MPG.0000000000001603DOI Listing

Publication Analysis

Top Keywords

probiotic products
8
quality control
8
working group
8
functional properties
8
products
5
commercial probiotic
4
products call
4
call improved
4
quality
4
improved quality
4

Similar Publications

Background: Maintaining gut health is a persistent and unresolved challenge in the poultry industry. Given the critical role of gut health in chicken performance and welfare, there is a pressing need to identify effective gut health intervention (GHI) strategies to ensure optimal outcomes in poultry farming. In this study, across three broiler production cycles, we compared the metagenomes and performance of broilers provided with ionophores (as the control group) against birds subjected to five different GHI combinations involving vaccination, probiotics, prebiotics, essential oils, and reduction of ionophore use.

View Article and Find Full Text PDF

Levilactobacillus brevis YT108, identified for its ability to metabolize prebiotic xylo-oligosaccharides (XOS), emerges as a candidate for probiotic use in synbiotic food formulations. This study aimed to investigate the metabolic and genomic traits associated with XOS metabolism in YT108 and to assess its probiotic attributes through whole genome sequencing and in vitro assays. Strain YT108 exhibited robust growth kinetics on XOS as the sole carbon source, with a growth profile comparable to that on glucose, achieving a pH reduction to 4.

View Article and Find Full Text PDF

Akkermansia muciniphila supplementation in patients with overweight/obese type 2 diabetes: Efficacy depends on its baseline levels in the gut.

Cell Metab

January 2025

Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, National Clinical Research Center for Metabolic Diseases (Shanghai), Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission, Shanghai Key Laboratory for Endocrine Tumor, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China. Electronic address:

Akkermansia muciniphila is a promising target for managing obesity and type 2 diabetes (T2D), but human studies are limited. We conducted a 12-week randomized, double-blind, placebo-controlled trial involving 58 participants with overweight or obese T2D, who received A. muciniphila (AKK-WST01) or placebo, along with routine lifestyle guidance.

View Article and Find Full Text PDF

Microbiota in the gastrointestinal tract (GIT) consisting of the rumen and hindgut (the small intestine, cecum and colon) in dairy calves play a vital role in their growth and development. This review discusses the development of dairy calf intestinal microbiomes with an emphasis on the impact that husbandry and rearing management have on microbiome development, health and growth of pre-weaned dairy calves. The diversity and composition of the microbes that colonize the lower GIT (small and large intestine) can have a significant impact on the growth and development of the calf, through influence on nutrient metabolism, immune modulation, resistance or susceptibility to infection, production outputs and behaviour modification in adult life.

View Article and Find Full Text PDF

Prebiotics, traditionally linked to gut health, are increasingly recognized for their systemic benefits, influencing multiple organ systems through interactions with the gut microbiota. Compounds like inulin, fructooligosaccharides (FOS), and galactooligosaccharides (GOS) enhance short-chain fatty acid (SCFA) production, benefiting neurocognitive health, cardiovascular function, immune modulation, and skin integrity. Advances in biotechnology, including deep eutectic solvents (DES) for extraction and machine learning (ML) for personalized formulations, have expanded prebiotic applications.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!