Sigma 2 Receptor/Tmem97 Agonists Produce Long Lasting Antineuropathic Pain Effects in Mice.

ACS Chem Neurosci

School of Behavioral and Brain Sciences, The University of Texas at Dallas, Richardson, Texas 75080, United States.

Published: August 2017

Neuropathic pain is an important medical problem with few effective treatments. The sigma 1 receptor (σ1R) is known to be a potential target for neuropathic pain therapeutics, and antagonists for this receptor are effective in preclinical models and are currently in phase II clinical trials. Conversely, relatively little is known about σ2R, which has recently been identified as transmembrane protein 97 (Tmem97). We generated a series of σ1R and σ2R/Tmem97 agonists and antagonists and tested them for efficacy in the mouse spared nerve injury (SNI) model. In agreement with previous reports, we find that σ1R ligands given intrathecally (IT) produce relief of SNI-induced mechanical hypersensitivity. We also find that the putative σ2R/Tmem97 agonists DKR-1005, DKR-1051, and UKH-1114 (K ∼ 46 nM) lead to relief of SNI-induced mechanical hypersensitivity, peaking at 48 h after dosing when given IT. This effect is blocked by the putative σ2R/Tmem97 antagonist SAS-0132. Systemic administration of UKH-1114 (10 mg/kg) relieves SNI-induced mechanical hypersensitivity for 48 h with a peak magnitude of effect equivalent to 100 mg/kg gabapentin and without producing any motor impairment. Finally, we find that the TMEM97 gene is expressed in mouse and human dorsal root ganglion (DRG) including populations of neurons that are involved in pain; however, the gene is also likely expressed in non-neuronal cells that may contribute to the observed behavioral effects. Our results show robust antineuropathic pain effects of σ1R and σ2R/Tmem97 ligands, demonstrate that σ2R/Tmem97 is a novel neuropathic pain target, and identify UKH-1114 as a lead molecule for further development.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5715471PMC
http://dx.doi.org/10.1021/acschemneuro.7b00200DOI Listing

Publication Analysis

Top Keywords

neuropathic pain
12
sni-induced mechanical
12
mechanical hypersensitivity
12
antineuropathic pain
8
pain effects
8
σ1r σ2r/tmem97
8
σ2r/tmem97 agonists
8
relief sni-induced
8
putative σ2r/tmem97
8
gene expressed
8

Similar Publications

Local delivery of mesenchymal stem cell-extruded nanovesicles through a bio-responsive scaffold for acute spinal cord injury treatment.

Int J Pharm

January 2025

College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China; Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University, Hangzhou 310058, China; Jinhua Institute of Zhejiang University, Jinhua 321002, China; State Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou 310058, China; Department of Pharmacy, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China. Electronic address:

Intense inflammatory responses and elevated levels of reactive oxygen species (ROS) extremely exacerbate the pathological process of spinal cord injury (SCI). Mesenchymal stem cell (MSC)-derived extracellular vesicles (EV) can mitigate SCI-related inflammation but their production yield remains limited. Alternatively, MSC-extruded nanovesicles (NV) inherit the therapeutic potential from MSCs and have a markedly higher yield than EV.

View Article and Find Full Text PDF

Nociplastic pain among individuals with chronic ocular surface pain: one cause for "pain without stain"?

Surv Ophthalmol

January 2025

Michigan Medicine, Department of Ophthalmology and Visual Sciences, Ann Arbor, MI, USA.

Chronic ocular surface pain (COSP) refers to interrelated symptoms such as eye burning, aching, and irritation and can occur as an isolated condition or comorbid with numerous ocular disorders, including dry eye syndrome Treatments for COSP are largely aimed at the ocular surface and modulating pain arising from damaged corneal nerves; however, the average impact of these treatments on COSP are low to absent. A potential explanation for this is that in a subset of patients with COSP, individuals have amplified and/or dysregulated neural signaling and sensory processing within the central nervous system (CNS). As in other chronic pain conditions, this might be the pathogenic mechanism primarily responsible for maintaining pain - a phenomenon now referred to as nociplastic pain.

View Article and Find Full Text PDF

Female genital prolapse, especially apical prolapse, significantly affects women's health and quality of life. Sacrospinous hysteropexy is a widely used surgical procedure to address this condition, presenting few postoperative complications. However, one of the reported complications is neuropathic pain resulting from damage to the branches of the pudendal nerve.

View Article and Find Full Text PDF

Opioidergic activation of the descending pain inhibitory system underlies placebo analgesia.

Sci Adv

January 2025

Laboratory for Biofunction Dynamics Imaging, RIKEN Center for Biosystems Dynamics Research, 6-7-3 Minatojima-Minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan.

Placebo analgesia is caused by inactive treatment, implicating endogenous brain function involvement. However, the neurobiological basis remains unclear. In this study, we found that μ-opioid signals in the medial prefrontal cortex (mPFC) activate the descending pain inhibitory system to initiate placebo analgesia in neuropathic pain rats.

View Article and Find Full Text PDF

The use of antidepressant medications in the treatment of lichen simplex chronicus (LSC) also known as neurodermatitis, is not well-documented in the literature. The primary aim of our study is to evaluate the impact of duloxetine 30 mg on the quality of life in patients with LSC, focusing on both pruritus and psychopathological aspects. The secondary aim is to investigate the relationship between LSC and anxiety and depression.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!