gamma-Glutamyl transpeptidase has multi-catalytic activities. It degrades glutathione and can produce ammonia from glutamine. The present study was designed to examine whether the decreased cell proliferation, cellular glutathione content and concurrent increase in ammonia production in senescent cells in culture are the result of increased gamma-glutamyl transpeptidase activity. We used IMR-90 fibroblast and 3T3 LI preadipocyte cultures. The cellular glutathione content depended upon cell proliferation and cell density. The glutathione content was higher in cells at logarithmic growth, and lower at stationary growth or post confluency; dead cells had no detectable glutathione by the method currently used. The glutathione content was minimal in "old" IMR-90 cells, regardless of cell density. On the other hand, an increase occurred in the unit number of molecules of bound 5-iodoacetoamidofluorescein, an active-site directed stoichiometric inhibitor of transpeptidase. That result corresponded favorably with the increased enzyme activity, suggesting that the number of enzyme molecules per cell was increased. The inhibition of ammonia production of the cultures by inhibition of gamma-glutamyl transpeptidase by 5-iodoacetoamidofluorescein and reversible inhibition of ammonia production by a serine-borate mixture were consistent with our postulate. Addition of NH4Cl (0.1 mM) to IMR-90 cultures caused increased activities of transpeptidase and some of the lysosomal enzymes; concurrently, the amount of cellular glutathione and the number of cell divisions decreased. This suggests that the increased ammonia production presumably resulting from glutaminase activity of the observed increase of transpeptidase may profoundly affect certain cellular functions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/jcp.1041250114 | DOI Listing |
J Hazard Mater
January 2025
School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China. Electronic address:
Nitrate pollution poses severe risks to aquatic ecosystems and human health. The electrocatalytic nitrate reduction reaction (NITRR) offers a promising environmental and economic solution for nitrate pollution treatment and nitrogen source recovery; however, it continues to experience limited efficiency in neutral electrolytes. This study explores the heterointerface activation effects of TiO/CuO heterogeneous catalysts with rutile (R-TiO) and anatase (A-TiO) phases and reveals that R-TiO is an active crystal phase with high nitrate reduction performance.
View Article and Find Full Text PDFJ Hazard Mater
January 2025
Key Laboratory of Marine Geology and Metallogeny, First Institute of Oceanography, Ministry of Natural Resources (MNR), Qingdao 266061, China.
Microplastics (MP) have aroused increasing concern due to the negative environmental impact. However, the impact of bio/non-biodegradable MPs on the sludge composting process has not been thoroughly investigated. This study examined antibiotic resistance genes (ARGs), virulence factors (VFs), and microbial community functions in sludge compost with the application of polylactic acid (PLA) and polypropylene (PP), using metagenomic sequencing.
View Article and Find Full Text PDFChem Commun (Camb)
January 2025
Graphene Composite Research Center, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, P. R. China.
In this study, a distinctive multiple core-shell structure of Co nanoparticles inserted into N-doped carbon dodecahedron@Co hydroxide (Co/NCD@Co(OH)) was synthesized a spontaneous redox reaction between metallic Co and NO, ultimately materializing the fine dispersion and exposure of the active sites. The electronic interaction existing between the Co/NCD core and the Co(OH) shell brings a synergistic effect, conspicuously lessens the overpotential, and reinforces the yield-rate and faradaic efficiency of NH for electrochemical nitrate-ammonia conversion. This study underlines the spontaneous redox between the catalysts and substrate, rendering it as a synthetic strategy for designing genuine and well-dispersed active sites.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
Division of Chemistry and Chemical Engineering, California Institute of Technology (Caltech), Pasadena, California 91125, United States.
Samarium diiodide (SmI) exhibits high selectivity for NR catalyzed by molybdenum complexes; however, it has so far been employed only as a stoichiometric reagent (0.3 equiv of NH per Sm) combined with coordinating proton sources (e.g.
View Article and Find Full Text PDFFood Chem X
January 2025
Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou 225009, China.
Green electrospinning for the production of freshness-indicating labels, employing entirely natural biopolymers and pigments, holds significance in the development of intelligent food packaging. This study aimed to prepare zein (Z) fibrous film (FF) incorporated with varying concentrations of anthocyanin (A; 0-0.5 %) through green electrospinning.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!