Burkholderia pseudomallei is an environmental saprophyte and the causative agent of melioidosis, a severe infectious disease prevalent in tropical areas, including southeast Asia and northern Australia. In Thailand, the highest incidence of melioidosis is in the northeast region, where saline soil and water are abundant. We hypothesized that B. pseudomallei develops an ability to thrive in saline conditions and gains a selective ecological advantage over other soil-dwelling microorganisms. However, little is known about how an elevated NaCl concentration affects survival and adaptive changes in this pathogen. In this study, we examined the adaptive changes in six isolates of B. pseudomallei after growth in Luria-Bertani medium containing different concentrations of NaCl at 37°C for 6 hr. The bacteria were then investigated for resistance to heat at 50°C and killing by hydrogen peroxide (H O ). In addition, flagellar production, biofilm formation, and the plaque formation efficiency of B. pseudomallei after culture in saline conditions were observed. In response to exposure to 150 and 300 mmol L NaCl, all B. pseudomallei isolates showed significantly increased thermal tolerance, oxidative resistance, and plaque-forming efficiency. However, NaCl exposure notably decreased the number of B. pseudomallei flagella. Taken together, these results provide insight into the adaptations of B. pseudomallei that might be crucial for survival and persistence in the host and/or endemic environments with high salinity.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5552950PMC
http://dx.doi.org/10.1002/mbo3.493DOI Listing

Publication Analysis

Top Keywords

plaque formation
8
pseudomallei
8
burkholderia pseudomallei
8
saline conditions
8
adaptive changes
8
effects sodium
4
sodium chloride
4
chloride heat
4
heat resistance
4
resistance oxidative
4

Similar Publications

Objective: Focused ultrasound (FUS)-mediated blood-brain barrier (BBB) opening is safe and potentially beneficial in patients with Alzheimer's disease (AD) for the removal of amyloid-beta (Aβ) plaques. However, the optimal BBB opening intervals and number of treatment sessions for clinical improvement remain undefined. Therefore, the aim of this study was to evaluate the safety and benefits of repeated and more extensive BBB opening alone.

View Article and Find Full Text PDF

Interaction between bacterial adhesins leads to coaggregation by the oral bacteria and .

mBio

January 2025

Antimicrobial Resistance, Omics and Microbiota Group, Centre for Systems Health and Integrated Metabolic Research, Department of Biosciences, Nottingham Trent University, Nottingham, United Kingdom.

is an unusual diderm firmicute that plays a central role in the formation of dental biofilm formation through coaggregation with many other oral bacteria. However, the molecular interactions leading to oral biofilm formation are largely unknown. In a recent study (L.

View Article and Find Full Text PDF

Cardiovascular disease remains a prominent cause of disability and premature death worldwide. Within this spectrum, carotid artery atherosclerosis is a complex and multifaceted condition, and a prominent precursor of acute ischaemic stroke and other cardiovascular events. The intricate interplay among inflammation, oxidative stress, endothelial dysfunction, lipid metabolism, and immune responses participates in the development of lesions, leading to luminal stenosis and potential plaque instability.

View Article and Find Full Text PDF

Insulin signaling and oxidative stress: Bridging the gap between type 2 diabetes mellitus and Alzheimer's disease.

J Alzheimers Dis

January 2025

Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China.

Background: Type 2 diabetes mellitus (T2D) and Alzheimer's disease (AD) are two prevalent chronic diseases that pose significant global health challenges. Increasing evidence suggests a complex bidirectional relationship between these conditions, where T2D elevates the risk of AD, and AD exacerbates glucose metabolism abnormalities in T2D.

Objective: This review explores the molecular mechanisms linking T2D and AD, focusing on the role of insulin signaling pathways and oxidative stress.

View Article and Find Full Text PDF

Background And Objective: Interleukin-6 (IL-6) plays multifaceted roles in cancer and atherosclerosis. Initially recognized for its role in immune response and inflammation, IL-6 promotes tumor progression via the JAK-STAT and MAP kinase pathways and is associated with poor cancer prognoses. In atherosclerosis, IL-6 contributes to endothelial dysfunction and plaque formation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!