We propose a multistructural microiteration (MSM) method for geometry optimization and reaction path calculation in large systems. MSM is a simple extension of the geometrical microiteration technique. In conventional microiteration, the structure of the non-reaction-center (surrounding) part is optimized by fixing atoms in the reaction-center part before displacements of the reaction-center atoms. In this method, the surrounding part is described as the weighted sum of multiple surrounding structures that are independently optimized. Then, geometric displacements of the reaction-center atoms are performed in the mean field generated by the weighted sum of the surrounding parts. MSM was combined with the QM/MM-ONIOM method and applied to chemical reactions in aqueous solution or enzyme. In all three cases, MSM gave lower reaction energy profiles than the QM/MM-ONIOM-microiteration method over the entire reaction paths with comparable computational costs. © 2017 Wiley Periodicals, Inc.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/jcc.24857 | DOI Listing |
Phys Chem Chem Phys
July 2022
Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Sapporo 001-0021, Japan.
Multistructural microiteration (MSM) is a method to take account of contributions of multiple surrounding structures in a geometrical optimization or reaction path calculation using the quantum mechanics/molecular mechanics (QM/MM) ONIOM method. In this study, we combined MSM with the electrostatic embedding (EE) scheme of the QM/MM-ONIOM method by extending its original formulation for mechanical embedding (ME). MSM-EE takes account of the polarization in the QM region induced by point charges assigned to atoms in the multiple surrounding structures, where the point charges are scaled by the weight factor of each surrounding structure determined through MSM.
View Article and Find Full Text PDFACS Omega
January 2019
Fukui Institute for Fundamental Chemistry, Kyoto University, Kyoto 606-8103, Japan.
The mechanism of l-lactate generation from pyruvate by l-lactate dehydrogenase (LDH) from the rabbit muscle was studied theoretically by the multistructural microiteration (MSM) method combined with the quantum mechanics/molecular mechanics (QM/MM)-ONIOM method, where the MSM method describes the MM environment as a weighted average of multiple different structures that are fully relaxed during geometry optimization or a reaction path calculation for the QM part. The results showed that the substrate binding and product states were stabilized only in the open-loop conformation of LDH and the reaction occurred in the closed-loop conformation. In other words, before and after the chemical reaction, a large-scale structural transition from the open-loop conformation to the closed-loop conformation and vice versa occurred.
View Article and Find Full Text PDFJ Comput Chem
October 2017
Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo, 060-0810, Japan.
We propose a multistructural microiteration (MSM) method for geometry optimization and reaction path calculation in large systems. MSM is a simple extension of the geometrical microiteration technique. In conventional microiteration, the structure of the non-reaction-center (surrounding) part is optimized by fixing atoms in the reaction-center part before displacements of the reaction-center atoms.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!