Inhibitory effect of FSLLRY-NH on inflammatory responses induced by hydrogen peroxide in HepG2 cells.

Arch Pharm Res

Department of Pharmacology, College of Pharmacy, Chung-Ang University, Seoul, 156-756, Republic of Korea.

Published: July 2017

Proteinase activated receptor 2 (PAR2), which is localized in the GI tract, the respiratory system, and the kidney tubules is a G protein-coupled receptor associated with inflammation, metabolism, and disease. The aim of this study was to explore the role of PAR2 in hydrogen peroxide (HO)-induced HepG2 cells by using FSLLRY-NH a PAR2 antagonist. HO treatment resulted in induction of PAR2 in esophageal, gastric, and liver cells, with the most robust response being in HepG2 cells. Furthermore, this effect was dose-dependent in HepG2 cells. Treatment with HO at concentrations above 400 μM for 24 h also reduced HepG2 cell viability. HO treatment increased both the protein and mRNA levels of IL-1β, IL-8, and TNF-α, as well as those of SAPK/JNK. The increased levels of these pro-inflammatory genes and SAPK/JNK induced by HO were attenuated in a dose-dependent manner when cells were co-treated with HO and FSLLRY-NH2. In summary, the PAR2 antagonist peptide, FSLLRY-NH2, reduces the level of the pro-inflammatory genes IL-8, IL-1β, and TNF-α induced by HO, through the SAPK/JNK pathways in HepG2 cells. These data suggest that a PAR2 antagonist could be an anti-inflammatory agent in HepG2 cells.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s12272-017-0927-9DOI Listing

Publication Analysis

Top Keywords

hepg2 cells
24
par2 antagonist
12
hydrogen peroxide
8
cells
8
pro-inflammatory genes
8
hepg2
7
par2
6
inhibitory fsllry-nh
4
fsllry-nh inflammatory
4
inflammatory responses
4

Similar Publications

Calcium hydroxide nanoparticles (Ca(OH)NPs) possess potent antimicrobial activities and unique physical and chemical properties, making them valuable across various fields. However, limited information exists regarding their effects on genomic DNA integrity and their potential to induce apoptosis in normal and cancerous human cell lines. This study thus aimed to evaluate the impact of Ca(OH)NPs on cell viability, genomic DNA integrity, and oxidative stress induction in human normal skin fibroblasts (HSF) and cancerous hepatic (HepG2) cells.

View Article and Find Full Text PDF

Self-assembled HO-1i-Pt(IV) nanomedicine targeting p38/MAPK and MDR pathways for cancer chemo-immunotherapy.

J Control Release

January 2025

Department of Chemical Biology and Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin 300070, China; Key Laboratory of Immune Microenvironment and Disease of the Ministry of Education, Tianjin Medical University, Tianjin 300070, China. Electronic address:

Platinum(II)-based antitumor drugs are widely used in clinics but limited by severe side effects and resistance. Multi-target Platinum(IV) complexes are emerging as ideal alternatives. Heme oxygenase-1 (HO-1) works as a rate-limiting step in heme degradation and is overexpressed in malignant tumors.

View Article and Find Full Text PDF

Multidrug resistance (MDR) has become a major challenge in tumor chemotherapy, primarily associated with the overexpression of P-glycoprotein (P-gp). Inhibiting P-gp expression and function through redox dyshomeostasis has shown great potential for reversing MDR. Here, a nanometer system of copper-based metal-organic framework (HA-CuMOF@DOX) modified with hyaluronic acid (HA) was constructed to overcome MDR via two-way regulation of redox homeostasis under hypoxia.

View Article and Find Full Text PDF

Background Aims: Hepatitis B virus (HBV) leads to severe liver diseases, such as cirrhosis and hepatocellular carcinoma. Identification of host factors that regulate HBV replication can provide new therapeutic targets. The discovery of sodium taurocholate cotransporting polypeptide (NTCP) as an HBV entry receptor has enabled the establishment of hepatic cell lines for analyzing HBV infection and propagation.

View Article and Find Full Text PDF

B-Type Trimeric Procyanidins Attenuate Nonalcoholic Hepatic Steatosis Through AMPK/mTOR Signaling Pathway in Oleic Acid-Induced HepG2 Cells and High-Fat Diet- Fed Zebrafish.

Plant Foods Hum Nutr

January 2025

Qinghai Provincial Key Laboratory of Tibetan Medicine Research and CAS Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Chinese Academy of Science, Xining, 810008, P.R. China.

NAFLD is one of the most common and rapidly increasing liver diseases. Procyanidin C1 and procyanidin C2, B-type trimeric procyanidins, show beneficial effects on regulating lipid metabolism. However, the mechanism underlying these effects remain elusive.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!