An Exploration of Gene-Gene Interactions and Their Effects on Hypertension.

Int J Genomics

Department of Biostatistics and Computational Biology, University of Rochester, Rochester, NY, USA.

Published: May 2017

Hypertension tends to perpetuate in families and the heritability of hypertension is estimated to be around 20-60%. So far, the main proportion of this heritability has not been found by single-locus genome-wide association studies. Therefore, the current study explored gene-gene interactions that have the potential to partially fill in the missing heritability. A two-stage discovery-confirmatory analysis was carried out in the Framingham Heart Study cohorts. The first stage was an exhaustive pairwise search performed in 2320 early-onset hypertensive cases with matched normotensive controls from the offspring cohort. Then, identified gene-gene interactions were assessed in an independent set of 694 subjects from the original cohort. Four unique gene-gene interactions were found to be related to hypertension. Three detected genes were recognized by previous studies, and the other 5 loci/genes (, , , , and ) were novel findings, which had no strong main effect on hypertension and could not be easily identified by single-locus genome-wide studies. Also, by including the identified gene-gene interactions, more variance was explained in hypertension. Overall, our study provides evidence that the genome-wide gene-gene interaction analysis has the possibility to identify new susceptibility genes, which can provide more insights into the genetic background of blood pressure regulation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5470022PMC
http://dx.doi.org/10.1155/2017/7208318DOI Listing

Publication Analysis

Top Keywords

gene-gene interactions
20
single-locus genome-wide
8
identified gene-gene
8
hypertension
6
interactions
5
gene-gene
5
exploration gene-gene
4
interactions effects
4
effects hypertension
4
hypertension hypertension
4

Similar Publications

The genetic basis of complex traits involves the function of many genes with small effects as well as complex gene-gene and gene-environment interactions. As one of the major players in complex diseases, the role of gene-environment interactions has been increasingly recognized. Motivated by epidemiology studies to evaluate the joint effect of environmental mixtures, we developed a functional varying-index coefficient model (FVICM) to assess the combined effect of environmental mixtures and their interactions with genes, under a longitudinal design with quantitative traits.

View Article and Find Full Text PDF

GRAMMAR-Lambda Delivers Efficient Understanding of the Genetic Basis for Head Size in Catfish.

Biology (Basel)

January 2025

Key Laboratory of Aquatic Genomics, Ministry of Agriculture and Rural Affairs, Beijing Key Laboratory of Fishery Biotechnology, Chinese Academy of Fishery Sciences, Beijing 100141, China.

The shape of the skull plays a crucial role in the evolution and adaptation of species to their environments. In the case of aquaculture fish, the size of the head is also an important economic trait, as it is linked to fillet yield and ornamental value. This study applies our GRAMMAR-Lambda method to perform a genome-wide association study analysis on loci related to head size in catfish.

View Article and Find Full Text PDF

Spatially resolved transcriptomics (SRT) provides an invaluable avenue for examining cell-cell interactions within native tissue environments. The development and evaluation of analytical tools for SRT data necessitate tools for generating synthetic datasets with known ground truth of cell-cell interaction induced features. To address this gap, we introduce sCCIgen, a novel real-data-based simulator tailored to generate high-fidelity SRT data with a focus on cell-cell interactions.

View Article and Find Full Text PDF

Background: Rheumatoid arthritis (RA) is a degenerative autoimmune disease, often managed through symptomatic treatment. The co-occurrence of the reported extra-articular comorbidities such as inflammatory bowel disease (IBD), and dementia may complicate the pathology of the disease as well as the treatment strategies. Therefore, in our study, we aim to elucidate the key genes, and regulatory elements implicated in the progression and association of these diseases, thereby highlighting the linked potential therapeutic targets.

View Article and Find Full Text PDF

Genetic variations in IGF2BP2 and CAPN10 and their interaction with environmental factors increase gestational diabetes mellitus risk in Chinese women.

Gene

March 2025

Department of Immunology, Special Key Laboratory of Gene Detection and Therapy of Guizhou Province, Zunyi Medical University, Zunyi, China. Electronic address:

Article Synopsis
  • - This study explores the link between genetic variations in the IGF2BP2 and CAPN10 genes and the risk of gestational diabetes (GDM) among Chinese women, involving 1,566 participants.
  • - Significant findings showed that the C allele of IGF2BP2/rs11927381 increased GDM risk, while the TC genotype of CAPN10/rs2975760 was linked to reduced risk, with both genes interacting in ways that heightened susceptibility to GDM.
  • - Environmental factors, like increased BMI and specific exposures, were also found to elevate the risk of GDM, highlighting the complex interplay between genetics and environmental influences on this condition.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!