Cytolethal distending toxin (CDT) produced by contains three subunits: CdtA, CdtB, and CdtC. Among these three toxin subunits, CdtB is the toxic moiety of CDT with DNase I activity, resulting in DNA double-strand breaks (DSB) and, consequently, cell cycle arrest at the G2/M stage and apoptosis. Radiation therapy is an effective modality for the treatment of localized prostate cancer (PCa). However, patients often develop radioresistance. Owing to its particular biochemical properties, we previously employed CdtB as a therapeutic agent for sensitizing radioresistant PCa cells to ionizing radiation (IR). In this study, we further demonstrated that CDT suppresses the IR-induced autophagy pathway in PCa cells by attenuating c-Myc expression and therefore sensitizes PCa cells to radiation. We further showed that CDT prevents the formation of autophagosomes via decreased high-mobility group box 1 (HMGB1) expression and the inhibition of acidic vesicular organelle (AVO) formation, which are associated with enhanced radiosensitivity in PCa cells. The results of this study reveal the detailed mechanism of CDT for the treatment of radioresistant PCa.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5462984PMC
http://dx.doi.org/10.3389/fcimb.2017.00223DOI Listing

Publication Analysis

Top Keywords

pca cells
16
cytolethal distending
8
distending toxin
8
prostate cancer
8
radioresistant pca
8
pca
6
cells
5
cdt
5
toxin enhances
4
enhances radiosensitivity
4

Similar Publications

Background: In neurodegenerative disease such as Alzheimer's disease and stroke, the brain transitions to pro-inflammatory profile, where microglia and T-cells in the brain have increase inflammatory profiles, along with increased Kv1.3 potassium channel abundance. Pharmacological blockade of Kv1.

View Article and Find Full Text PDF

Background: Caffeic acid (CA), a dietary compound, has been studied for its potential impact on inhibiting prostate cancer (PCa) growth. PCa is often associated with heightened expression of glyoxalase-1 (Glo-1), making it a target for potential therapeutic interventions. CA's mechanisms in suppressing Glo-1 expression and its effects on PCa cell proliferation are areas of interest for understanding its potential as an anticancer agent.

View Article and Find Full Text PDF

PlexinD1 is a driver and a therapeutic target in advanced prostate cancer.

EMBO Mol Med

January 2025

Department of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, WA, 99202, USA.

Aggressive prostate cancer (PCa) variants associated with androgen receptor signaling inhibitor (ARSI) resistance and metastasis remain poorly understood. Here, we identify the axon guidance semaphorin receptor PlexinD1 as a crucial driver of cancer aggressiveness in metastatic castration-resistant prostate cancer (CRPC). High PlexinD1 expression in human PCa is correlated with adverse clinical outcomes.

View Article and Find Full Text PDF

Since the establishment of the COVID-19 pandemic, a range of studies have been developed to understand the pathogenesis of SARS-CoV-2 infection, vaccine development, and therapeutic testing. However, the possible impacts that these viruses can have on non-target organisms have been explored little, and our knowledge of the consequences of the COVID-19 pandemic for biota is still very limited. Thus, the current study aimed to address this knowledge gap by evaluating the possible impacts of oral exposure of C57Bl/6 J female mice to SARS-CoV-2 lysate protein (at 20 µg/L) for 30 days, using multiple methods, including behavioral assessments, biochemical analyses, and histopathological examinations.

View Article and Find Full Text PDF

Nasopharyngeal carcinoma (NPC) refers to a cancerous tumor that develops in the upper and side walls of the nasopharyngeal cavity. Typically, individuals are often diagnosed with the disease when it has already progressed significantly, and those with advanced NPC tend to have an unfavorable outlook in terms of response rate to targeted treatments and overall clinical survival. Various molecular mechanisms, including Myeloid-derived suppressor cells and factors like PD-L1, have been explored to enhance the outcome of NPC.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!