Achieving and controlling strong light-matter interactions in many-body systems is of paramount importance both for fundamental understanding and potential applications. In this paper we demonstrate both experimentally and theoretically how to manipulate strong coupling between the Bragg-plasmon mode supported by an organo-metallic array and molecular excitons in the form of J-aggregates dispersed on the hybrid structure. We observe experimentally the transition from a conventional strong coupling regime exhibiting the usual upper and lower polaritonic branches to a more complex regime, where a third nondispersive mode is seen, as the concentration of J-aggregates is increased. The numerical simulations confirm the presence of the third resonance. We attribute its physical nature to collective molecule-molecule interactions leading to a collective electromagnetic response. A simple analytical model is proposed to explain the physics of the third mode. The nonlinear dependence on molecular parameters followed from the model are confirmed in a set of rigorous numerical studies. It is shown that at the energy of the collective mode molecules oscillate completely out of phase with the incident radiation acting as an effictive thin metal layer.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5481410PMC
http://dx.doi.org/10.1038/s41598-017-03305-8DOI Listing

Publication Analysis

Top Keywords

strong coupling
12
mode
5
plasmonic opals
4
opals observation
4
collective
4
observation collective
4
collective molecular
4
molecular exciton
4
exciton mode
4
strong
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!