Predicting effects on oxaliplatin clearance: in vitro, kinetic and clinical studies of calcium- and magnesium-mediated oxaliplatin degradation.

Sci Rep

Department of Pharmacology and Clinical Pharmacology and Auckland Cancer Society Research Centre, School of Medical Sciences, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand.

Published: June 2017

This study evaluated the impact of calcium and magnesium on the in vitro degradation and in vivo clearance of oxaliplatin. Intact oxaliplatin and Pt(DACH)Cl were measured in incubation solutions by HPLC-UV. A clinical study determined changes in plasma concentrations of calcium and magnesium in cancer patients and their impact on oxaliplatin clearance. Kinetic analyses modelled oxaliplatin degradation reactions in vitro and contributions to oxaliplatin clearance in vivo. Calcium and magnesium accelerated oxaliplatin degradation to Pt(DACH)Cl in chloride-containing solutions in vitro. Kinetic models based on calcium and magnesium binding to a monochloro-monooxalato ring-opened anionic oxaliplatin intermediate fitted the in vitro degradation time-course data. In cancer patients, calcium and magnesium plasma concentrations varied and were increased by giving calcium gluconate and magnesium sulfate infusions, but did not alter or correlate with oxaliplatin clearance. The intrinsic in vitro clearance of oxaliplatin attributed to chloride-, calcium- and magnesium-mediated degradation predicted contributions of <2.5% to the total in vivo clearance of oxaliplatin. In conclusion, calcium and magnesium accelerate the in vitro degradation of oxaliplatin by binding to a monochloro-monooxalato ring-opened anionic intermediate. Kinetic analysis of in vitro oxaliplatin stability data can be used for in vitro prediction of potential effects on oxaliplatin clearance in vivo.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5481441PMC
http://dx.doi.org/10.1038/s41598-017-04383-4DOI Listing

Publication Analysis

Top Keywords

calcium magnesium
20
oxaliplatin clearance
16
oxaliplatin degradation
12
oxaliplatin
11
vitro kinetic
8
calcium- magnesium-mediated
8
vitro degradation
8
clearance oxaliplatin
8
plasma concentrations
8
cancer patients
8

Similar Publications

Background: Understanding the diversity and distribution of fungal communities at a regional scale is important since fungi play a crucial role in ecosystem functioning. Our study used environmental metagenomics to determine fungal communities in mountainous forest soils in the central highlands of Mexico.

Methods: We used four different bioinformatic workflows to profile fungal assemblages, .

View Article and Find Full Text PDF

Effects of Magnesium Forms on the Magnesium Balance and Jejunal Transporters in Healthy Rats.

Prev Nutr Food Sci

December 2024

Department of Biology, Faculty of Science, Firat University, Elazig 23100, Türkiye.

Magnesium (Mg) is a mineral necessary for many biological activities in mammals. Here, we compared the effect of two Mg compounds [Mg picolinate (MgPic) to Mg oxide (MgO)] on Mg bioavailability and intestinal Mg and calcium transporter protein levels. Three groups of 21 male Wistar-Albino rats were randomly allocated and fed a standard diet (control) or a 500 mg/kg Mg-supplemented (MgPic or MgO) diet for 8 weeks.

View Article and Find Full Text PDF

Selective extraction of lithium over alkali and alkaline earth ions by synergistic solvent extraction.

Green Chem

December 2024

KU Leuven, Department of Chemistry Celestijnenlaan 200F P.O. box 2404 B-3001 Leuven Belgium

Direct lithium extraction (DLE) from natural surface and geothermal brines is very challenging due to the low ratio of lithium to other metals, and the lack of suitable materials that bind lithium with sufficiently high selectivity. In this paper, a synergistic solvent extraction system is described that comprises a liquid ion exchanger (saponified bis(2-ethylhexyl)dithiophosphoric acid) and a lithium-selective ligand (2,9-dibutyl-1,10-phenanthroline) in an aliphatic diluent. The extraction mechanism was investigated and was confirmed to involve the binding of lithium to the selective ligand, while the liquid ion exchanger facilitates the transfer of metal ions from the aqueous to the organic phase.

View Article and Find Full Text PDF
Article Synopsis
  • The study develops high yttrium-content phosphate-based glass-ceramic microspheres for use in bone cancer radiotherapy, showcasing their production through flame spheroidization and resulting in a narrow size distribution (45-125 μm).
  • Energy dispersive X-ray (EDX) analysis indicates an increase in yttrium content in the microspheres with higher yttrium oxide ratios, while showing a uniform distribution and a decrease in phosphate, calcium, and magnesium levels.
  • In vitro tests reveal that these microspheres exhibit good cytocompatibility, with enhanced cellular responses compared to earlier P40 glass microspheres, highlighting their potential as biomaterials for cancer treatment.
View Article and Find Full Text PDF

Introduction: Magnesium is involved in numerous reactions that regulate the functioning of different organs and systems. Hypomagnesemia impacts on the development of various metabolic disorders, including insulin resistance and diabetes mellitus (DM). Studying magnesium levels in children with type 1 DM is crucial, as deficiencies are linked to many diabetes complications.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!