This study evaluated the impact of calcium and magnesium on the in vitro degradation and in vivo clearance of oxaliplatin. Intact oxaliplatin and Pt(DACH)Cl were measured in incubation solutions by HPLC-UV. A clinical study determined changes in plasma concentrations of calcium and magnesium in cancer patients and their impact on oxaliplatin clearance. Kinetic analyses modelled oxaliplatin degradation reactions in vitro and contributions to oxaliplatin clearance in vivo. Calcium and magnesium accelerated oxaliplatin degradation to Pt(DACH)Cl in chloride-containing solutions in vitro. Kinetic models based on calcium and magnesium binding to a monochloro-monooxalato ring-opened anionic oxaliplatin intermediate fitted the in vitro degradation time-course data. In cancer patients, calcium and magnesium plasma concentrations varied and were increased by giving calcium gluconate and magnesium sulfate infusions, but did not alter or correlate with oxaliplatin clearance. The intrinsic in vitro clearance of oxaliplatin attributed to chloride-, calcium- and magnesium-mediated degradation predicted contributions of <2.5% to the total in vivo clearance of oxaliplatin. In conclusion, calcium and magnesium accelerate the in vitro degradation of oxaliplatin by binding to a monochloro-monooxalato ring-opened anionic intermediate. Kinetic analysis of in vitro oxaliplatin stability data can be used for in vitro prediction of potential effects on oxaliplatin clearance in vivo.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5481441 | PMC |
http://dx.doi.org/10.1038/s41598-017-04383-4 | DOI Listing |
PeerJ
January 2025
Laboratorio de Interacciones Bióticas, Centro de Investigación en Ciencias Biológicas, Universidad Autónoma de Tlaxcala, San Felipe Ixtacuixtla, Tlaxcala, Mexico.
Background: Understanding the diversity and distribution of fungal communities at a regional scale is important since fungi play a crucial role in ecosystem functioning. Our study used environmental metagenomics to determine fungal communities in mountainous forest soils in the central highlands of Mexico.
Methods: We used four different bioinformatic workflows to profile fungal assemblages, .
Prev Nutr Food Sci
December 2024
Department of Biology, Faculty of Science, Firat University, Elazig 23100, Türkiye.
Magnesium (Mg) is a mineral necessary for many biological activities in mammals. Here, we compared the effect of two Mg compounds [Mg picolinate (MgPic) to Mg oxide (MgO)] on Mg bioavailability and intestinal Mg and calcium transporter protein levels. Three groups of 21 male Wistar-Albino rats were randomly allocated and fed a standard diet (control) or a 500 mg/kg Mg-supplemented (MgPic or MgO) diet for 8 weeks.
View Article and Find Full Text PDFGreen Chem
December 2024
KU Leuven, Department of Chemistry Celestijnenlaan 200F P.O. box 2404 B-3001 Leuven Belgium
Direct lithium extraction (DLE) from natural surface and geothermal brines is very challenging due to the low ratio of lithium to other metals, and the lack of suitable materials that bind lithium with sufficiently high selectivity. In this paper, a synergistic solvent extraction system is described that comprises a liquid ion exchanger (saponified bis(2-ethylhexyl)dithiophosphoric acid) and a lithium-selective ligand (2,9-dibutyl-1,10-phenanthroline) in an aliphatic diluent. The extraction mechanism was investigated and was confirmed to involve the binding of lithium to the selective ligand, while the liquid ion exchanger facilitates the transfer of metal ions from the aqueous to the organic phase.
View Article and Find Full Text PDFACS Omega
December 2024
Advanced Materials Research Group, Faculty of Engineering, University of Nottingham, Nottingham NG7 2RD, U.K.
Front Nutr
December 2024
Department of Children's Diseases and Pediatric Surgery, I. Horbachevsky Ternopil National Medical University, Ternopil, Ukraine.
Introduction: Magnesium is involved in numerous reactions that regulate the functioning of different organs and systems. Hypomagnesemia impacts on the development of various metabolic disorders, including insulin resistance and diabetes mellitus (DM). Studying magnesium levels in children with type 1 DM is crucial, as deficiencies are linked to many diabetes complications.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!