The aim of this study was to compare cardiovascular hemodynamics and cerebral oxygenation/perfusion (COP) during and after maximal incremental exercise in obese individuals according to their aerobic fitness versus age-matched healthy controls (AMHC). Fifty-four middle-aged obese (OB) and 16 AMHC were recruited. Maximal cardiopulmonary function (gas exchange analysis), cardiac hemodynamics (impedance cardiography), and left frontal COP (near-infrared spectroscopy: NIRS) were measured continuously during a maximal incremental ergocycle test. During recovery, reoxygenation/perfusion rate (ROPR: oxyhemoglobin: ΔOHb, deoxyhemoglobin: ΔHHb and total hemoglobin: ΔtHb; with NIRS) was also measured. Obese participants (OB, = 54) were divided into two groups according to the median V˙O2 peak: the low-fit obese (LF-OB, = 27) and the high-fit obese (HF-OB, = 27). During exercise, end tidal pressure of CO (PETCO), and COP (ΔOHb, ΔHHb and ΔtHb) did not differ between groups (OB, LF-OB, HF-OB, AMHC). During recovery, PETCO and ROPR (ΔOHb, ΔHHb and ΔtHb) were similar between the groups (OB, LF-OB, HF-OB, AMHC). During exercise and recovery, cardiac index was lower ( < 0.05) in LF-OB versus the other two groups (HF-OB, AMHC). As well, systolic blood pressure was higher during exercise in the OB, LF-OB and HF-OB groups versus AMHC ( < 0.05). When compared to AMHC, obese individuals (OB, LF-OB, HF-OB) have a similar cerebral vasoreactivity by CO and cerebral hemodynamics during exercise and recovery, but a higher systolic blood pressure during exercise. Higher fitness in obese subjects (HF-OB) seems to preserve their cardiopulmonary and cardiac function during exercise and recovery.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5492208 | PMC |
http://dx.doi.org/10.14814/phy2.13321 | DOI Listing |
J Sci Med Sport
January 2025
Department of Health Promotion, School of Public Health, Faculty of Medical and Health Sciences, Sylvan Adams Sports Institute, Tel-Aviv University, Israel. Electronic address:
Objectives: The study aimed to examine the effects of exercise-induced muscle damage on running kinetics.
Design: Twenty-six adult recreational male runners performed 60 min of downhill running (-10 %) at 65 % of maximal heart rate. Running gait changes, systemic and localized muscle damage markers were assessed pre - and post-exercise induced muscle damage protocol.
Exp Physiol
January 2025
Burdon Sanderson Cardiac Science Centre, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK.
High cardiac sympathetic drive and release of the sympathetic cotransmitter neuropeptide Y (NPY) are significant features of congestive heart failure (CHF), in which resting venous NPY levels are known to be associated with mortality. However, whether circulating NPY levels increase during exercise in CHF when they are already elevated is controversial. We sought to establish the dynamics of circulating NPY levels in CHF patients treated with contemporary medical therapy and devices in relationship to indices of performance linked to long-term prognosis.
View Article and Find Full Text PDFNutrients
January 2025
Department of Nutrition, School of Public Health, Sun Yat-sen University (Northern Campus), 74 Zhongshan Road II, Guangzhou 510080, China.
Background: Brussels chicory affluent in phenolic acids could inhibit atherosclerosis; however, its effects on exercise performance and post-exercise recovery are unknown. We hypothesized that Brussels chicory could enhance exhaustive aerobic exercise performance and post-exercise recovery by promoting lactate oxidation.
Methods: This is a single-blind, randomized, placebo-controlled two-way cross-over trial involving 32 untrained college students (men 18) who consumed either Brussels chicory juice (100 g of Brussels chicory containing ~130 mg phenolic acids and 180 mL fresh milk) or placebo (180 mL fresh milk) for 7 days with a 2-week washout period.
Nutrients
January 2025
Department of Military and Emergency Medicine, F. Edward Hébert School of Medicine, Uniformed Services University, Bethesda, MD 20814, USA.
Background/objectives: Omega-3 fatty acids (-3), recognized for their anti-inflammatory and brain health benefits, are being studied to enhance cognitive function, aid physical recovery, and reduce injury rates among military service members (SMs). Given the unique demands faced by this tactical population, this systematic review aims to evaluate the evidence of -3 to support physical and mental resilience and overall performance.
Methods: This review was conducted in accordance with Preferred Reporting Items for Systematic reviews and Meta-Analyses (PRISMA) guidelines and includes articles that assessed -3 status or implemented -3 interventions in relation to physical and cognitive performance, recovery, and injury outcomes (2006 to 2024).
Nutrients
January 2025
BiOSSE, Biology of Organisms, Stress, Health, Environment, Institut Universitaire de Technologie, Département Génie Biologique, Le Mans Université, 53020 Laval, France.
Background: Physical activity, such as running, protects against cardiovascular disease and obesity but can induce oxidative stress. Athletes often consume antioxidants to counteract the overproduction of reactive oxygen and nitrogen species during exercise. , particularly its phycocyanin content, activates the Nrf2 pathway, stimulating antioxidant responses.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!